
Electronic Companion to “Waste not want not: The environmental implications

of quick response and upcycling”

In this document we provide supplementary analyses for the upcycling model with demand encroachment.

We first solve for the firm’s optimal decisions in stage 2 (in Section EC.1), and then analyze the firm’s

optimization problem in stage 1 (in Section EC.2). Section EC.3 presents the proofs of Proposition 9 and

Lemma 3 in the paper.

EC.1. Firm’s Optimization Problem in Stage 2

In Stage 2, given x and q and realized market size y, the focal firm chooses S and qδ to maximize

ΠU†
f (S, qδ, y) = pf ·min{DU†

f (S, y), q + qδ} − cmx− cq − (c+ δ)qδ + wS,

subject to the constraints S + qδ ≤ x− q, S ≥ 0, qδ ≥ 0.

For any given S, if α < 1− pf + ps, demand for the focal firm’s product is (see §4.3 of the paper)

DU†
f (S, y) = D̄U†

f (y) +D†(S, y) =


(1− pf )y − S

(
pf−ps

1−α − ps
α )

· (pf−ps

1−α − pf ) if S < (
pf−ps

1−α − ps

α )y

(1− pf−ps

1−α )y, if S ≥ (
pf−ps

1−α − ps

α )y,

which simplifies to

DU†
f (S, y) =

(1− pf )y − αS if S < (
pf−ps

1−α − ps

α )y

(1− pf−ps

1−α )y, if S ≥ (
pf−ps

1−α − ps

α )y.

If α ≥ 1− pf + ps, then demand for the focal firm’s product becomes

DU†
f (S, y) = D̄U†

f (y) +D†(S, y) =

(1− pf )y − (
1−pf

1−ps/α
)S if S < (1− ps

α )y

0, if S ≥ (1− ps

α )y,

In either case, note that DU†
f (S, y) weakly decreases in S and equals (1− pf )y at S = 0. In the rest of this

document we present the analysis for α < 1 − pf + ps. The analysis for α ≥ 1 − pf + ps is the same (with

slightly different expressions) and hence omitted.

By Assumption 1 (i.e., w ≤ pf − c− δ), the firm always prefers satisfying a unit of existing demand (via

quick response) over selling a unit of fabric (or doing nothing). That is, its optimal production decision in

stage 2 is given by qδ = min{x− q, (DU†
f (S, y)− q)+}. Substituting this into the firm’s profit function yields

ΠU†
f (S, y) = pf ·min{DU†

f (S, y), x} − cmx− cq − (c+ δ)min{x− q, (DU†
f (S, y)− q)+}+ wS, (EC.1)

which the firm maximizes by choosing S, subject to the constraint 0 ≤ S ≤ x − q − qδ = min{x − q, (x −
DU†

f (S, y))+}.
There are three cases, depending on how the realized market size y compares with x.

Case I) If (1 − pf )y ≥ x: In this case, if the focal firm does not upcycle, it can use all of its fabric to

fulfill demand since DU†
f (0, y) = (1 − pf )y ≥ x. Thus, since we assume pf − c − δ > w, the firm chooses

SU†(x, q, y) = 0. The focal firm’s profit is ΠU†
f (SU†(x, q), y) = pfx− (c+ δ)(x− q)− cq − cmx.
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Case II) If (1 − pf )y < x ≤ (1 − ps

α )y: We have DU†
f (S, y) < x for all S. In this case, the constraint

S ≤ x−DU†
f (S, y) is satisfied if and only if S ≤ S̄, where S̄

.
=

x−(1−pf )y
1−α < (

pf−ps

1−α − ps

α )y. Thus, the optimal

S satisfies 0 ≤ S ≤ min{x− q,
x−(1−pf )y

1−α }. There are three subcases.

II.a) If αx+ (1− α)q ≤ (1− pf )y, the above constraint further simplifies to 0 ≤ S ≤ x−(1−pf )y
1−α , and it

is easy to check that q ≤ DU†
f (S, y) < x in this range. Thus, the profit function in Equation (EC.1) becomes

ΠU†
f (S, y) = pfD

U†
f (S, y)− cmx− cq − (c+ δ)(DU†

f (S, y)− q) + wS

= (pf − c− δ)((1− pf )y − αS − q) + (pf − c)q − cmx+ wS

= (pf − c− δ)((1− pf )y − q) + (pf − c)q − cmx+ (w − (pf − c− δ)α)S.

The optimal solution is SU†(x, q, y) = 0 if w ≤ (pf − c− δ)α and SU†(x, q, y) =
x−(1−pf )y

1−α otherwise. When

SU† = 0, the focal firm uses some of its leftover fabric to satisfy its demand via quick response, and does

not sell the rest (i.e., there is unused deadstock fabric). When SU†(x, q, y) =
x−(1−pf )y

1−α , the firm uses some

leftover fabric to satisfy its own demand via quick response, and sells the rest to the upcycling firm.

So

ΠU†
f (SU†(x, q), y) =

(pf − c− δ)((1− pf )y − q) + (pf − c)q − cmx, if w ≤ (pf − c− δ)α,

(pf − c− δ)(x− q − SU†(x, q, y)) + (pf − c)q − cmx+ wSU†(x, q), if w > (pf − c− δ)α.

II.b) If q ≤ (1− pf )y < αx+ (1−α)q, the constraint becomes 0 ≤ S ≤ min{x− q,
x−(1−pf )y

1−α } = x− q.

The profit function in Equation (EC.1) becomes

ΠU†
f (S, y) =

pfD
U†
f (S, y)− cmx− cq − (c+ δ)(DU†

f (S, y)− q) + wS, if DU†
f (S, y) ≥ q,

pfD
U†
f (S, y)− cmx− cq + wS, if DU†

f (S, y) < q,

which reduces to

ΠU†
f (S, y) =

(pf − c− δ)((1− pf )y − q) + (pf − c)q − cmx+ (w − (pf − c− δ)α)S, if 0 ≤ S ≤ (1−pf )y−q
α ,

pf (1− pf )y − cmx− cq + (w − αpf )S, if
(1−pf )y−q

α < S ≤ x− q.

The optimal solution is SU†(x, q, y) = 0 if w ≤ (pf − c − δ)α, SU†(x, q, y) =
(1−pf )y−q

α if (pf − c − δ)α <

w ≤ pfα, and SU†(x, q, y) = x − q if w > pfα. Note that in the second solution, DU†
f (SU†(x, q, y), y) = q

and SU†(x, q, y) < x− q, so the focal firm sells all of its finished goods, but there is leftover fabric that the

firm neither uses nor sells. In the third solution, DU†
f (SU†(x, q, y), y) < q and SU†(x, q, y) = x− q, so there

is leftover finished goods but no leftover fabric.

II.c) If (1−pf )y < q, the constraint is 0 ≤ S ≤ min{x−q,
x−(1−pf )y

1−α } = x−q, and we have DU†
f (S, y) < q

for all S. Equation (EC.1) reduces to

ΠU†
f (S, y) = pf ((1− pf )y − αS)− cmx− cq + wS.

The optimal solution is SU†(x, q, y) = 0 if w ≤ αpf and SU†(x, q, y) = x− q if w > αpf . In both solutions,

there is leftover finished goods. The first solution has leftover fabric (x− q) while the second solution does

not.
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Case III) If x > (1 − ps

α )y: In this case, the constraint S + DU†
f (S, y) ≤ x is satisfied if and only if

S ≤ x − (1 − pf−ps

1−α )y (which is greater than (
pf−ps

1−α − ps

α )y). Thus, the optimal solution satisfies 0 ≤ S ≤
min{x− q, x− (1− pf−ps

1−α )y}. There are again three subcases.

III.a) If q ≤ (1− pf−ps

1−α )y, the constraint becomes S ≤ min{x− q, x− (1− pf−ps

1−α )y} = x− (1− pf−ps

1−α )y,

and in this range, q ≤ DU†
f (S, y) < x. Equation (EC.1) reduces to

ΠU†
f (S, y) =

 (pf − c− δ)((1− pf )y − q) + (pf − c)q − cmx+ (w − (pf − c− δ)α)S, if S ≤ (
pf−ps

1−α − ps

α )y,

(pf − c− δ)((1− pf−ps

1−α )y − q) + (pf − c)q − cmx+ wS, if (
pf−ps

1−α − ps

α )y < S ≤ x− (1− pf−ps

1−α )y.

The optimal solution is SU†(x, q, y) = x− (1− pf−ps

1−α )y if w > (pf − c− δ)α. If w ≤ (pf − c− δ)α, the focal

firm compares S = 0 with S = x− (1− pf−ps

1−α )y. We have SU†(x, q, y) = 0 if w ≤ (pf−c−δ)(αpf−ps)y
(1−α)x−(1−α−pf+ps)y

and

SU†(x, q, y) = x − (1 − pf−ps

1−α )y otherwise. When SU†(x, q, y) = 0 there is unused leftover fabric that the

firm does not sell. When SU†(x, q, y) = x− (1− pf−ps

1−α )y there are no leftover FGs or fabric.

III.b) If (1− pf−ps

1−α )y < q ≤ (1−pf )y, the constraint becomes 0 ≤ S ≤ min{x−q, x−(1− pf−ps

1−α )y} = x−q.

Equation (EC.1) reduces to

ΠU†
f (S, y) =


(pf − c− δ)((1− pf )y − q) + (pf − c)q − cmx+ (w − (pf − c− δ)α)S, if S ≤ (1−pf )y−q

α ,

pf (1− pf )y − cmx− cq + (w − αpf )S, if
(1−pf )y−q

α < S < min{(pf−ps

1−α − ps

α )y, x− q},

pf (1− pf−ps

1−α )y − cmx− cq + wS, if (
pf−ps

1−α − ps

α )y ≤ S ≤ x− q.

There are two cases. (i) If x−q ≤ (
pf−ps

1−α − ps

α )y, then the optimal solution is SU†(x, q, y) = x−q if w > pfα,

SU†(x, q, y) =
(1−pf )y−q

α if (pf − c− δ)α < w ≤ pfα, and SU†(x, q, y) = 0 if w ≤ (pf − c− δ)α. Solution 1 has

leftover FGs (q−DU†
f > 0) but no leftover fabric; Solution 2 has no leftover FGs, no quick response, and some

unused/unsold leftover fabric (x− q − SU†(x, q, y) > 0); Solution 3 has no leftover FGs, some leftover fabric

used for quick response (DU†
f − q > 0), and some unused/unsold leftover fabric (x− q − SU†(x, q, y) > 0).

(ii) If x−q > (
pf−ps

1−α − ps

α )y, there are three sections. When w > pfα, the optimal solution is SU†(x, q, y) =

x− q. When (pf − c− δ)α < w ≤ pfα, the firm compares

ΠU†
f (

(1− pf )y − q

α
, y) = pfq − cmx− cq + w

(1− pf )y − q

α

with

ΠU†
f (x− q, y) = pf (1−

pf − ps
1− α

)y − cmx− cq + w(x− q).

The difference is

ΠU†
f (

(1− pf )y − q

α
, y)−ΠU†

f (x− q, y) = pfq − w(x− q +
q

α
) +

w

α
(1− pf )y − pf (1−

pf − ps
1− α

)y.

By analyzing the sign of the difference, we find that the focal firm chooses SU†(x, q, y) =
(1−pf )y−q

α if

y ≥ α(x−q)+q
1−pf

or {y < α(x−q)+q
1−pf

, w ≤ αpf (q−(1−
pf−ps

1−α )y)

α(x−q)+q−(1−pf )y
}, and SU†(x, q, y) = x− q otherwise.

When w ≤ (pf − c− δ)α, the firm compares

ΠU†
f (0, y) = pf (1− pf )y − cmx− cq − (c+ δ)((1− pf )y − q)

with

ΠU†
f (x− q, y) = pf (1−

pf − ps
1− α

)y − cmx− cq + w(x− q).
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The firm chooses SU†(x, q, y) = 0 if
(
pf (

pf−ps

1−α − pf )− (c+ δ)(1− pf )
)
y ≥ w(x − q) − (c + δ)q, and

SU†(x, q, y) = x− q otherwise.

III.c) If (1− pf )y < q, Equation (EC.1) reduces to

ΠU†
f (S, y) =

pf ((1− pf )y − αS)− cq − cmx+ wS, if S ≤ min{(pf−ps

1−α − ps

α )y, x− q},

pf (1− pf−ps

1−α )y − cq − cmx+ wS, if min{(pf−ps

1−α − ps

α )y, x− q} ≤ S ≤ x− q.

When y ≥ x−q

(
pf−ps

1−α − ps
α )

, the optimal solution is SU†(x, q, y) = 0 if w ≤ αpf and SU†(x, q, y) = x − q if

w > αpf .

When y < x−q

(
pf−ps

1−α − ps
α )

and w > αpf , the optimal solution is SU†(x, q, y) = x− q.

When y < x−q

(
pf−ps

1−α − ps
α )

and w ≤ αpf , the firm compares

ΠU†
f (0, y) = pf (1− pf )y − cq − cmx

with

ΠU†
f (x− q, y) = pf (1−

pf − ps
1− α

)y − cq − cmx+ w(x− q).

The optimal solution is SU†(x, q, y) = 0 if w ≤ pf (αpf−ps)y
(1−α)(x−q) , and SU†(x, q, y) = x− q otherwise.

Summary of Optimal Upcycling Decision in Stage 2

Summarizing the analyses above, we can conclude that for any given x, q and realized market size y, there

exists a unique pair of thresholds W1(x, q, y) and W2(x, q, y) such that the optimal upcycling decision is

given by:

SU†(x, q) =


0 if w ≤ W1(x, q, y),

max{0, (1−pf )y−q
α } if W1(x, q, y) < w < W2(x, q, y),

min{x− q, x− (1− pf−ps

1−α )y,
(x−(1−pf )y)

+

1−α } if w ≥ W2(x, q, y).

When w ≤ W1(x, q, y), the firm does not upcycle at all. When W1(x, q, y) < w < W2(x, q, y), the firm

upcycles only a portion of its on-hand fabric such that it retains enough demand to sell out its inventory of

finished goods. When w ≥ W2(x, q, y), the firm upcycles as much on-hand fabric as possible, so that every

unit of on-hand fabric is either upcycled or used to satisfy demand via quick response.

The thresholds W1(x, q, y) and W2(x, q, y) are illustrated in Figure EC.1, and described in more detail

below. Specifically, there are six cases, as illustrated in the six sub-figures of Figure EC.1.

We define the following expressions: w1(x, q, y)
.
=

pf (αpf−ps)y
(1−α)(x−q) , w2(x, q, y)

.
=

αpf

(
q−(1−

pf−ps

1−α )y
)

αx+(1−α)q−(1−pf )y
, w3(x, q, y)

.
=

pf ·(q−(1−
pf−ps

1−α )y)+(pf−c−δ)((1−pf )y−q)

x−q , w4(x, q, y)
.
=

(pf−c−δ)(αpf−ps)y
(1−α)x−(1−α−pf+ps)y

; r1
.
= 1 +

αpf−ps

α(1−α)(1−pf )
, r2

.
= 1 +

pf (αpf−ps)
α(1−α)(1−pf )(pf−c−δ) , and r3

.
= 1 +

αpf−ps

α(1−α−pf+ps)
.

Case (a): When 1 ≤ x
q ≤ r1, we have α(1−α)(x−q)

αpf−ps
≤ q

1−pf
≤ αx+(1−α)q

1−pf
≤ x

1−pf
, and also x

1−ps/α
≤

αx+(1−α)q
1−pf

≤ q

1−
pf−ps

1−α

. Hence, the thresholds are: W1 = W2 = w1(x, q, y) for y < α(1−α)(x−q)
αpf−ps

, W1 =

W2 = αpf for y ∈ [α(1−α)(x−q)
αpf−ps

, q
1−pf

], W1 = α(pf − c − δ) and W2 = αpf for y ∈ [ q
1−pf

, αx+(1−α)q
1−pf

],

W1 = W2 = α(pf − c− δ) for y ∈ [αx+(1−α)q
1−pf

, x
1−pf

], and W1 = W2 = 0 for y > x
1−pf

.
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Case (b): When r1 < x
q ≤ min{r2, r3}, we have q

1−pf
≤ α(1−α)(x−q)

αpf−ps
≤ αx+(1−α)q

1−pf
≤ x

1−pf
, and also

x
1−ps/α

≤ αx+(1−α)q
1−pf

≤ q

1−
pf−ps

1−α

. Hence, the thresholds are: W1 = W2 = w1(x, q, y) for y ≤ q
1−pf

, W1 =

α(pf − c − δ) and W2 = w2(x, q, y) for y ∈ ( q
1−pf

, α(1−α)(x−q)
αpf−ps

], W1 = α(pf − c − δ) and W2 = αpf for

y ∈ (α(1−α)(x−q)
αpf−ps

, αx+(1−α)q
1−pf

], W1 = W2 = α(pf − c − δ) for y ∈ (αx+(1−α)q
1−pf

, x
1−pf

], and W1 = W2 = 0 for

y > x
1−pf

.

Case (c): When r2 < x
q ≤ r3, which is only possible for c+ δ <

pf (αpf−ps)
(1−pf )(1−α) , the thresholds are the same

as in Case (b) except that W1 = W2 = w3(x, q, y) for y ∈ ( q
1−pf

,
(pf−c−δ)(αx+(1−α)q)−pf (q−(1−

pf−ps

1−α )y)

(pf−c−δ)(1−pf )
].

Case (d): when x
q > r3 and c+δ <

pf (αpf−ps)
(1−pf )(1−α) (i.e., r2 < r3), we have

q
1−pf

≤ q

1−
pf−ps

1−α

≤ x
1−ps/α

≤ x
1−pf

,

and also q

1−
pf−ps

1−α

≤ αx+(1−α)q
1−pf

≤ x
1−ps/α

. The thresholds are: W1 = W2 = w1(x, q, y) for y ≤ q
1−pf

,

W1 = W2 = w3(x, q, y) for y ∈ ( q
1−pf

, q

1−
pf−ps

1−α

], W1 = W2 = w4(x, q, y) for y ∈ ( q

1−
pf−ps

1−α

, x
1−ps/α

], W1 =

W2 = α(pf − c− δ) for y ∈ ( x
1−ps/α

, x
1−pf

], and W1 = W2 = 0 for y > x
1−pf

.

Case (e): when r3 < x
q ≤ r2 and c+δ ≥ pf (αpf−ps)

(1−pf )(1−α) (i.e., r3 ≤ r2), the thresholds are the same as those in

Case (d) except thatW1 = α(pf−c−δ) andW2 = w2(x, q, y) for y ∈ ( q
1−pf

,
(pf−c−δ)(αx+(1−α)q)−pf (q−(1−

pf−ps

1−α )y)

(pf−c−δ)(1−pf )
].

Case (f): when x
q > r2 and c + δ ≥ pf (αpf−ps)

(1−pf )(1−α) (i.e., r3 ≤ r2), the thresholds are the same as those in

Case (d).

Table EC.1 summarizes the optimal upcycling decision SU†(x, q, y), the corresponding profit function,

and the deadstock outcomes under different values of x, q, y, and w.

(a) x
q ≤ r1 (b) r1 < x

q ≤ min{r2, r3} (c) r2 < x
q ≤ r3

(d) x
q > r3 ∩ r2 < r3 (e) r3 < x

q ≤ r2 ∩ r2 ≥ r3 (f) x
q > r2 ∩ r2 ≥ r3

Figure EC.1: Optimal solution regions in stage 2. In each figure, SU†(x, q, y) = 0 in the

white area, SU†(x, q, y) = max{0, (1−pf )y−q
α } in the blue area, and SU†(x, q, y) = min{x − q, x −

(1− pf−ps

1−α )y,
(x−(1−pf )y)

+

1−α } in the gray area.
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Conditions SU†(x, q, y) Leftover Leftover Profit function Π
U†
f

(S, y)

FG fabric

w ≥ W2

y ∈ ( x
1−pf

,+∞) 0 0 0 pf (1 − pf )y − cq − cmx

x
q

≤ r3: y ∈ (
αx+(1−α)q

1−pf
, x
1−pf

]
x−(1−pf )y

1−pf
0 0 (pf − c − δ)(x − q − S) + (pf − c)q − cmx + wS

x
q

> r3: y ∈ ( x
1−ps/α

, x
1−pf

]

x
q

> r3: y ∈ ( q

1−
pf−ps
1−α

, x
1−ps/α

]
x− (1−

pf−ps
1−α

)y 0 0 (pf − c− δ)

(
(1 −

pf−ps
1−α

)y − q

)
+(pf − c)q− cmx+wS

x
q

≤ r3: y ∈ (
α(1−α)(x−q)

αpf−ps
,
αx+(1−α)q

1−pf
] x − q > 0 0 pf ((1 − pf )y − αS) − cmx − cq + wS

x
q

≤ r3: y ∈ (0,
α(1−α)(x−q)

αpf−ps
]

x − q > 0 0 pf (1 −
pf−ps
1−α

)y − cmx − cq + wSx
q

> r3: y ∈ (0, q

1−
pf−ps
1−α

]

W1 <

w < W2

y ∈ ( q
1−pf

,
αx+(1−α)q

1−pf
) (1−pf )y−q

α
0 > 0 pf q − cmx − cq + wS

w ≤ W1

y ∈ ( q
1−pf

, x
1−pf

] 0 0 > 0 (pf − c − δ)((1 − pf )y − q) + (pf − c)q − cmx

y ∈ (0, q
1−pf

] 0 > 0 > 0 pf (1 − pf )y − cq − cmx

Table EC.1: The firm’s optimal upcycling decision, deadstock outcomes and profit function in

stage 2.
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EC.2. Firm’s Optimization Problem in Stage 1

The analysis in Section EC.1 provides the firm’s optimal production and upcycling decisions in stage 2, for

given x, q, and realized market size y. In stage 1, the firm chooses x and q to maximize its expected profit.

As we can observe from Figure EC.1 and Table EC.1, the specific expression for the firm’s expected profit

function may vary depending on x and q, as well as the price/cost parameters (e.g., whether w ≥ αpf ).

Overall, we distinguish five regions on the w-δ parameter space. In each region, the firm chooses (x, q) to

maximize its expected profit EΠU†
f (x, q). The specific conditions for each region and the relevant expected

profit functions are summarized in Table EC.2. Note that the condition c+ δ <
pf (αpf−ps)
(1−α)(1−pf )

is obtained from

r2 < r3. Figure EC.2 illustrates the regions. Note that the firm adopts full upcycling when EΠU†
f (x, q) =

EΠ1(x, q) or EΠU†
f (x, q) = EΠ2(x, q) and selective upcycling in all other cases.

The specific expressions of the expected profit functions, i.e., EΠi(x, q) for i ∈ {1, 2, ..., 9}, and the

feasible solutions in each region are derived in the remaining part of this section.

Region Expected profit function EΠU†
f

(x, q)

w ≥ αpf

EΠU†
f

(x, q) =

EΠ1(x, q), if 1 ≤ x
q

≤ r3

EΠ2(x, q), if x
q

> r3.(Region A)

c + δ <
pf (αpf−ps)

(1−α)(1−pf )
∩ w ≤ α(pf − c − δ)

EΠU†
f

(x, q) =


EΠ3(x, q), if x−q

q
≤

pf (αpf−ps)

w(1−pf )(1−α)

EΠ4(x, q), if
pf (αpf−ps)

w(1−pf )(1−α)
< x−q

q
<

(pf−c−δ)(αpf−ps)

w(1−α−pf+ps)

EΠ5(x, q), if x−q
q

≥
(pf−c−δ)(αpf−ps)

w(1−α−pf+ps)
.

(Region B)

c + δ ≥
pf (αpf−ps)

(1−α)(1−pf )
∩ w ≤ α(pf − c − δ)

EΠU†
f

(x, q) =


EΠ3(x, q), if 1 ≤ x−q

q
≤

(pf−c−δ)(αpf−ps)

w(1−α−pf+ps)

EΠ6(x, q), if
(pf−c−δ)(αpf−ps)

w(1−α−pf+ps)
< x−q

q
<

pf (αpf−ps)

(1−pf )(1−α)w

EΠ5(x, q), if x−q
q

≥
pf (αpf−ps)

(1−pf )(1−α)w
.

(Region C)

max{α(pf − c − δ),
αpf (1−α−pf+ps)

(1−α)(1−pf )
} ≤ w < αpf

EΠU†
f

(x, q) =


EΠ2(x, q) if x

q
≥ r3

EΠ8(x, q), if
pf (αpf−ps)

(1−pf )(1−α)w
+ 1 < x

q
< r3

EΠ7(x, q), if 1 ≤ x
q

≤
pf (αpf−ps)

(1−pf )(1−α)w
+ 1.

(Region D)

α(pf − c − δ) < w <
αpf (1−α−pf+ps)

(1−α)(1−pf )
)

EΠU†
f

(x, q) =


EΠ2(x, q), if x

q
≥

pf (αpf−ps)

(1−pf )(1−α)w
+ 1

EΠ9(x, q), if r3 < x
q

≤
pf (αpf−ps)

(1−pf )(1−α)w
+ 1

EΠ7(x, q), if 1 ≤ x
q

< r3.

(Region E)

Table EC.2: The firm’s expected profit function in stage 1.
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(a) c ≤ pf (αpf−ps)
(1−α)(1−pf )

(b) c >
pf (αpf−ps)
(1−α)(1−pf )

Figure EC.2: Solution regions in stage 1.

In each of the five possible regions on the (w, δ) parameter space, we derive the firm’s expected profit

function EΠU†
f (x, q) in stage 1 based on the results in Section EC.1. Then, in each region, we summarize

the firm’s optimization problem and present the feasible solutions and feasibility conditions. We assume

D ∼ Uniform[0, 1] in this analysis.

Region A: w ≥ αpf

A.1) Summary of the optimization problem: We can show that the firm’s expected profit function is

given by

EΠU†
f (x, q) =

EΠ1(x, q), if 1 ≤ x
q ≤ r3

EΠ2(x, q), if x
q > r3.

The expressions for EΠ1(x, q) and EΠ2(x, q) are presented in A.2 and A.3, respectively. To find the (x, q)

that maximizes EΠU†
f (x, q) (subject to the constraint x ≥ q), we can compare the optimal solutions for two

constrained maximization problems: (i) maxx,q EΠ1(x, q) subject to the constraint 1 ≤ x
q ≤ r3, and (ii)

maxx,q EΠ2(x, q) subject to the constraint x
q ≥ r3. We note that the corner solution x

q = r3 is never optimal

(unless it coincides with an interior solution) because at x
q = r3, EΠ1(x, q) = EΠ2(x, q),

∂EΠ1(x,q)
∂q = ∂EΠ2(x,q)

∂q ,

and ∂EΠ1(x,q)
∂x = ∂EΠ2(x,q)

∂x . We denote the unique interior solution for maxx,q EΠi(x, q) by (xi, qi), i ∈ {1, 2}.
Similar notations are used for i ∈ 3, 4, ..., 9 throughout this section.

Thus, the potentially feasible solutions to the firm’s optimization problem in Region A are: (x1, q1),

(x2, q2) and (xB , qB), where xB = qB =
(1−pf )(pf−c−cm)

pf
. To find the global optimum, it suffices to check

the feasibility conditions of each of these solutions (provided in A.2 and A.3) and, if multiple solutions are

feasible, compare their corresponding expected profits.

A.2) Suppose 1 ≤ x
q ≤ r3: Based on our analysis in Section EC.1, the firm’s expected profit function in stage

1 is EΠ1(x, q)
.
=
∫ x−q

pf−ps
1−α

− ps
α

0 [pf (1− pf−ps

1−α )y+w(x−q)]dF (y)+
∫ αx+(1−α)q

1−pf
x−q

pf−ps
1−α

− ps
α

[pf (1−pf )y+(w−pfα)(x−q)]dF (y)+
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∫ x
1−pf

αx+(1−α)q
1−pf

[(pf−c−δ)(x−q)+pfq−(pf−c−δ−w)
x−(1−pf )y

1−α ]dF (y)+
∫ +∞

x
1−pf

[pfx−(c+δ)(x−q)]dF (y)−cq−cmx.

Differentiating the function with respect to q and x and using Y ∼ Uniform[0, 1], we obtain

∂EΠ1

∂q
= −αpf (

x− q
pf−ps

1−α − ps

α

) + (αpf − w − c− δ)(
αx+ (1− α)q

1− pf
) + δ,

∂EΠ1

∂x
= αpf (

x− q
pf−ps

1−α − ps

α

)+
α

1− α
(αpf−w−c−δ)(

αx+ (1− α)q

1− pf
)+

w + c+ δ − pf
1− α

(
x

1− pf
)+pf−c−δ−cm.

Solving the first-order conditions (FOCs), ∂EΠ1

∂q = 0 and ∂EΠ1

∂x = 0, yields the interior solution (x1, q1), which

is unique because the two derivatives are both linear in x and q.

We can also obtain the following expressions:

∂2EΠ1

∂q2
=

α2(1− α)pf
αpf − ps

+
(1− α)(αpf − w − c− δ)

1− pf
,

∂2EΠ1

∂x2
=

α2(1− α)pf
αpf − ps

+
(1 + α)(w + c+ δ)− (1 + α+ α2)pf

1− pf
,

∂2EΠ1

∂x∂q
= −α2(1− α)pf

αpf − ps
+

α(αpf − w − c− δ)

1− pf
,

∆1
.
=

∂2EΠ1

∂q2
∂2EΠ1

∂x2
− (

∂2EΠ1

∂x∂q
)2 =

−α2(1− α)p2f
(1− pf )(αpf − ps)

+
(w + c+ δ − αpf )(pf − w − c− δ)

(1− pf )2
,

x1 − q1 =
(1− pf )(αpf − ps) (δ(c+ cm)− (pf − c− cm)(w + c− αpf ))

(αpf − w − c− δ)(pf − c− w − δ)(αpf − ps) + (1− α)α2p2f (1− pf )
.

Overall, the interior solution (x1, q1) is feasible if and only if (iff) x1, q1 ≥ 0, ∂2EΠ1

∂q2 < 0, ∂2EΠ1

∂x2 < 0,

∆1 > 0 and 1 ≤ x1

q1
≤ r3.

A.3) Suppose x
q > r3: The firm’s expected profit function in stage 1 is EΠ2(x, q)

.
=
∫ q

1−
pf−ps
1−α

0 [pf (1 −
pf−ps

1−α )y+w(x−q)]dF (y)+
∫ x

1−ps/α
q

1−
pf−ps
1−α

[pf (1− pf−ps

1−α )y−(c+δ)((1− pf−ps

1−α )y−q)+w(x−(1− pf−ps

1−α )y)]dF (y)+

∫ x
1−pf

x
1−ps/α

[(pf−c−δ)(x−q)+pfq−(pf−c−δ−w)
x−(1−pf )y

1−α ]dF (y)+
∫ +∞

x
1−pf

[pfx−(c+δ)(x−q)]dF (y)−cq−cmx.

The FOCs for the interior solution are:

∂EΠ2

∂q
= −(w + c+ δ)(

q

1− pf−ps

1−α

) + δ = 0,

∂EΠ2

∂x
=

α(pf − c− δ − w)

1− α
(

x

1− ps/α
) + pf − c− δ − cm − pf − c− δ − w

1− α
(

x

1− pf
) = 0.

Solving the FOCs yields the unique interior solution:

q2 =
δ

w + c+ δ
(1− pf − ps

1− α
), x2 =

(pf − c− δ − cm)(1− α)

(pf − c− δ − w)( 1
1−pf

− α
1−ps/α

)
.

Note that ∂2EΠ2

∂q2 < 0, ∂2EΠ2

∂x2 =
(pf−c−δ−w)

1−α ( α
1−ps/α

− 1
1−pf

) < 0 because α ∈ ( ps

pf
, 1), and ∂2EΠ2

∂q∂x = 0.

Therefore, solution (x2, q2) is feasible if and only if x2

q2
> r3.
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Region B: w < α(pf − c− δ) and c+ δ <
pf (αpf−ps)
(1−α)(1−pf )

(i.e., r2 < r3)

B.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

EΠU†
f (x, q) =


EΠ3(x, q), if x−q

q ≤ pf (αpf−ps)
w(1−pf )(1−α)

EΠ4(x, q), if
pf (αpf−ps)

w(1−pf )(1−α) <
x−q
q <

(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

EΠ5(x, q), if x−q
q ≥ (pf−c−δ)(αpf−ps)

w(1−α−pf+ps)
.

Similar to the case in Region A, we can rule out the corner solutions x
q = 1 +

pf (αpf−ps)
w(1−pf )(1−α) and x

q =

1+
(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

. We can also show that the interior solution to maxx,q EΠ4(x, q) is never optimal. Thus,

the potentially feasible solutions are (x3, q3), (x5, q5) and (xB , qB). We discuss the feasibility conditions in

more detail below.

B.2) Suppose x
q ≤ 1 +

pf (αpf−ps)
w(1−pf )(1−α) , which is obtained from w ≤ w3(x, q,

q
1−pf

) =
pf (αpf−ps)q

(x−q)(1−pf )(1−α) :

The firm’s expected profit function in stage 1 is EΠ3
.
=
∫ w(x−q)

pf (
pf−ps
1−α

−pf )

0 [pf (1 − pf−ps

1−α )y + w(x − q)]dF (y) +∫ q
1−pf

w(x−q)

pf (
pf−ps
1−α

−pf )

pf (1− pf )ydF (y)+
∫ x

1−pf
q

1−pf

[pf (1− pf )y− (c+ δ)((1− pf )y− q)]dF (y)+
∫ +∞

x
1−pf

[pfx− (c+ δ)(x−

q)]dF (y)− cq − cmx. The FOCs for the interior solution (x3, q3) are

∂EΠ3

∂q
= δ − w

(
w(x− q)

pf (
pf−ps

1−α − pf )

)
− (c+ δ)(

q

1− pf
) = 0,

∂EΠ3

∂x
= w

(
w(x− q)

pf (
pf−ps

1−α − pf )

)
+ pf − c− δ − cm − (pf − c− δ)(

x

1− pf
) = 0.

We note that

∂2EΠ3

∂q2
=

w2(1− α)

pf (αpf − ps)
− c+ δ

1− pf
,

∂2EΠ3

∂x2
=

w2(1− α)

pf (αpf − ps)
− pf − c− δ

1− pf
,

∂2EΠ3

∂x∂q
= − w2(1− α)

pf (αpf − ps)
,

∆3
.
=

∂2EΠ3

∂q2
∂2EΠ3

∂x2
− (

∂2EΠ3

∂x∂q
)2 = − w2(1− α)

(αpf − ps)(1− pf )
+

(pf − c− δ)(c+ δ)

(1− pf )2
,

x3 − q3 =
(cpf − (c+ δ)(c+ cm))(αpf − ps)(1− pf )

(pf − c− δ)(c+ δ)(αpf − ps)− (1− α)(1− pf )w2
.

The interior solution (x3, q3) is feasible iff x3, q3 ≥ 0, ∂2EΠ3

∂q2 < 0, ∂2EΠ3

∂x2 < 0, ∆3 > 0 and 1 ≤ x3

q3
≤ r2.

B.3) Suppose 1+
pf (αpf−ps)

w(1−pf )(1−α) <
x
q ≤ 1+

(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

, where the upper bound is obtained from w ≤

w3(x, q,
q

1−
pf−ps

1−α

) =
(pf−c−δ)(αpf−ps)q
(1−α−pf+ps)(x−q) : The firm’s expected profit function is EΠ4

.
=
∫ w(x−q)−(c+δ)q

pf (
pf−ps
1−α

−pf )−(c+δ)(1−pf )

0 [pf (1−

pf−ps

1−α )y+w(x− q)]dF (y)+
∫ x

1−pf

w(x−q)−(c+δ)q

pf (
pf−ps
1−α

−pf )−(c+δ)(1−pf )

[pf (1−pf )y− (c+ δ)((1−pf )y− q)]dF (y)+
∫ +∞

x
1−pf

[pfx−

(c+ δ)(x− q)]dF (y)− cq − cmx. We have

∂EΠ4

∂q
= α− (w + c+ δ)

(
w(x− q)− (c+ δ)q

pf (
pf−ps

1−α − pf )− (c+ δ)(1− pf )

)
,
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∂EΠ4

∂x
= w

(
w(x− q)− (c+ δ)q

pf (
pf−ps

1−α − pf )− (c+ δ)(1− pf )

)
+ pf − c− δ − cm − (pf − c− δ)(

x

1− pf
).

The interior solution is not feasible in this case because ∂2EΠ4

∂q2 > 0 always (note that c+ δ <
pf (αpf−ps)
(1−α)(1−pf )

in

Region B).

B.4) Suppose x
q > 1 +

(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

: The firm’s expected profit function is EΠ5
.
=
∫ q

1−
pf−ps
1−α

0 [pf (1 −

pf−ps

1−α )y+w(x−q)]dF (y)+
∫ wx

(pf−c−δ)(
pf−ps
1−α

−pf )+w(1−
pf−ps
1−α

)

q

1−
pf−ps
1−α

[(pf −c−δ−w)(1− pf−ps

1−α )y+(c+δ)q+wx]dF (y)+

∫ x
1−pf

wx

(pf−c−δ)(
pf−ps
1−α

−pf )+w(1−
pf−ps
1−α

)

[pf (1− pf )y− (c+ δ)((1− pf )y− q)]dF (y)+
∫ +∞

x
1−pf

[pfx− (c+ δ(x− q)]dF (y)−

cq − cmx. The FOCs for the interior solution are

∂EΠ5

∂q
= δ − (w + c+ δ)(

q

1− pf−ps

1−α

) = 0,

∂EΠ5

∂x
= w

(
wx

(pf − c− δ)(
pf−ps

1−α − pf ) + w(1− pf−ps

1−α )

)
+ pf − c− δ − cm − (pf − c− δ)(

x

1− pf
) = 0.

We can check that ∂2EΠ5

∂q2 < 0, ∂2EΠ5

∂x2 < 0 and ∂2EΠ5

∂x∂q = 0. Thus, the interior solution (x5, q5) is feasible if

and only if x5, q5 ≥ 0, and x5

q5
> 1 +

(pf−c−δ)(αpf−ps)
(1−α−pf+ps)w

.

Region C: w < α(pf − c− δ) and c+ δ ≥ pf (αpf−ps)
(1−α)(1−pf )

(i.e., r2 ≥ r3)

C.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

EΠU†
f (x, q) =


EΠ3(x, q), if 1 ≤ x−q

q ≤ (pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

EΠ6(x, q), if
(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

< x−q
q <

pf (αpf−ps)
(1−pf )(1−α)w

EΠ5(x, q), if x−q
q ≥ pf (αpf−ps)

(1−pf )(1−α)w .

As in Region A, we can rule out the corner solutions x
q = 1 +

(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

and x
q = 1 +

pf (αpf−ps)
(1−pf )(1−α)w .

Thus, the potentially feasible solutions in Region C are (x3, q3), (x6, q6), (x5, q5) and (xB , qB). The feasibility

conditions of (x3, q3) and (x5, q5) are similar to those discussed in Region B and hence omitted. In C.2 we

discuss the feasibility conditions for (x6, q6).

C.2) Suppose
(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

< x−q
q <

pf (αpf−ps)
(1−pf )(1−α)w : Based on our analysis in EC.1, the firm’s expected

profit function is EΠ6
.
=
∫ w(x−q)(1−α)

pf (αpf−ps)

0 [pf (1 − pf−ps

1−α )y + w(x − q)]dF (y) +
∫ q

1−pf

w(x−q)(1−α)
pf (αpf−ps)

pf (1 − pf )ydF (y) +

∫ w(x−q)−(c+δ)q

pf (
pf−ps
1−α

−pf )−(c+δ)(1−pf )

q
1−pf

[pf (1−pf )y−(c+δ)((1−pf )y−q)]dF (y)+
∫ q(1−α)

1−α−pf+ps

w(x−q)−(c+δ)q

pf (
pf−ps
1−α

−pf )−(c+δ)(1−pf )

[pf (1− pf−ps

1−α )y+

w(x − q)]dF (y) +
∫ wx

(pf−c−δ)(
pf−ps
1−α

−pf )+w(1−
pf−ps
1−α

)

q(1−α)
1−α−pf+ps

[(pf − c − δ − w)(1 − pf−ps

1−α )y + (c + δ)q + wx]dF (y) +∫ x
1−pf

wx

(pf−c−δ)(
pf−ps
1−α

−pf )+w(1−
pf−ps
1−α

)

[pf (1−pf )y− (c+ δ)((1−pf )y− q)]dF (y)+
∫ +∞

x
1−pf

[pfx− (c+ δ)(x− q)]dF (y)−

cq − cmx.
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The FOCs for the interior solution (x6, q6) are

∂EΠ6

∂q
= δ − (c+ δ + w)q(1− α)

1− α− pf + ps
+

(w + c+ δ) (w(x− q)− (c+ δ)q)

pf (
pf−ps

1−α − pf )− (c+ δ)(1− pf )
− (c+ δ)q

1− pf
− w2(x− q)(1− α)

pf (αpf − ps)
= 0

∂EΠ6

∂x
=

w2(1− α)(x− q)

pf (αpf − ps)
− (1− α)(w2(x− q)− (c+ δ)wq)

pf (αpf − ps)− (c+ δ)(1− pf )(1− α)
+

w2(1− α)x

(pf − c− δ)(αpf − ps) + w(1− α− pf + ps)

+ pf − c− δ − cm − (pf − c− δ)x

1− pf
= 0.

The interior solution (x6, q6) is feasible iff x6, q6 ≥ 0, ∂2EΠ6

∂q2 < 0, ∂2EΠ6

∂x2 < 0, ∆6
.
= ∂2EΠ6

∂q2 · ∂
2EΠ6

∂x2 −(∂
2EΠ6

∂q∂x )2 > 0

and 1 +
(pf−c−δ)(αpf−ps)
w(1−α−pf+ps)

< x6

q6
< 1 +

pf (αpf−ps)
(1−pf )(1−α)w .

Region D: max{α(pf − c− δ),
αpf (1−α−pf+ps)

(1−α)(1−pf )
} ≤ w < αpf

D.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

EΠU†
f (x, q) =


EΠ2(x, q) if x

q ≥ r3

EΠ8(x, q), if
pf (αpf−ps)

(1−pf )(1−α)w + 1 < x
q < r3

EΠ7(x, q), if 1 ≤ x
q ≤ pf (αpf−ps)

(1−pf )(1−α)w + 1.

Similar to the previous regions, we can show that the potentially feasible solutions are (x2, q2), (x8, q8),

(x7, q7), and (xB , qB).

D.2) Suppose 1 ≤ x
q ≤ pf (αpf−ps)

(1−pf )(1−α)w+1: The firm’s expected profit function is EΠ7
.
=
∫ w(x−q)

pf (
pf−ps
1−α

−pf )

0 [pf (1−

pf−ps

1−α )y + w(x − q)]dF (y) +
∫ q

1−pf

w(x−q)

pf (
pf−ps
1−α

−pf )

pf (1 − pf )ydF (y) +
∫ αx+(1−α)q

1−pf
q

1−pf

[pfq +
w
α ((1 − pf )y − q)]dF (y) +

∫ x
1−pf

αx+(1−α)q
1−pf

[pf (
(1−pf )y−αx

1−α )−(c+δ)(
(1−pf )y−αx

1−α −q)+w(
x−(1−pf )y

1−α )]dF (y)+
∫ +∞

x
1−pf

[pfx−(c+δ)(x−q)]dF (y)−

cq − cmx. The FOCs for the interior solution are

∂EΠ7

∂q
= −w

(
w(x− q)

pf (
pf−ps

1−α − pf )

)
+ (pf − c− δ − w

α
)(
αx+ (1− α)q

1− pf
)− (pf − w

α
)(

q

1− pf
) + δ = 0,

∂EΠ7

∂x
= w

(
w(x− q)

pf (
pf−ps

1−α − pf )

)
− (pf − c− δ − w

α
)(
α(x− q)

1− pf
) + (pf − c− δ)(1− x

1− pf
)− cm = 0.
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Note that

∂2EΠ7

∂q2
=

w2

pf (
pf−ps

1−α − pf )
− αpf − w + (c+ δ)(1− α)

1− pf
,

∂2EΠ7

∂x2
=

w2

pf (
pf−ps

1−α − pf )
− (1 + α)(pf − c− δ)− w

1− pf

∂2EΠ7

∂q∂x
= − w2

pf (
pf−ps

1−α − pf )
+

α(pf − c− δ)− w

1− pf
,

∆7 =
∂2EΠ7

∂q2
∂2EΠ7

∂x2
− (

∂2EΠ7

∂q∂x
)2 = − wpf

(1− pf )2
− (1− α)w2

(1− pf )(αpf − ps)
+

(pf − c− δ)(c+ αpf + δ)

(1− pf )2
,

x7 − q7 =
(1− pf )(αpf − ps)[δ(c+ cm)− c(pf − c− cm)]

(1− α)(1− pf )w2 + wpf (αpf − ps)− (αpf − ps)(pf − c− δ)(αpf + c+ δ)
.

The solution (x7, q7) is feasible if and only if x7, q7 ≥ 0, ∂2EΠ7

∂q2 < 0, ∂2EΠ7

∂x2 < 0, ∆7 > 0 and 1 ≤ x7

q7
≤

pf (αpf−ps)
(1−pf )(1−α)w + 1.

D.3) Suppose
pf (αpf−ps)

(1−pf )(1−α)w+1 < x
q < r3: The expected profit function is EΠ8

.
=
∫ w(αx+(1−α)q)−αpf q

(1−pf )w−αpf (1−
pf−ps
1−α

)

0 [pf (1−

pf−ps

1−α )y+w(x−q)]dF (y)+
∫ αx+(1−α)q

1−pf

w(αx+(1−α)q)−αpf q

(1−pf )w−αpf (1−
pf−ps
1−α

)

[pfq+
w
α ((1−pf )y−q)]dF (y)+

∫ x
1−pf

αx+(1−α)q
1−pf

[pf (
(1−pf )y−αx

1−α )−

(c+ δ)(
(1−pf )y−αx

1−α − q) + w(
x−(1−pf )y

1−α )]dF (y) +
∫ +∞

x
1−pf

[pfx− (c+ δ)(x− q)]dF (y)− cq − cmx.

The FOCs for the unique interior solution are

∂EΠ8

∂q
= −(w + pf − w

α
)

(
w(αx+ (1− α)q)− αpfq

(1− pf )w − αpf (1− pf−ps

1−α )

)
+ (pf − c− δ − w

α
)(
αx+ (1− α)q

1− pf
) + δ = 0,

∂EΠ8

∂x
=w

(
w(αx+ (1− α)q)− αpfq

(1− pf )w − αpf (1− pf−ps

1−α )

)
+

α(pf − c− δ − w/α)

1− α
(
αx+ (1− α)q

1− pf
)

+ pf − c− δ − cm − (pf − c− δ − w)

1− α
(

x

1− pf
) = 0.

The interior solution (x8, q8) is feasible iff x8, q8 ≥ 0, ∂2EΠ8

∂q2 < 0, ∂2EΠ8

∂x2 < 0, ∆8
.
= ∂2EΠ8

∂q2 · ∂
2EΠ8

∂x2 −(∂
2EΠ8

∂q∂x )2 > 0

and
pf (αpf−ps)

(1−pf )(1−α)w + 1 < x8

q8
< r3

Region E: α(pf − c− δ) ≤ w <
αpf (1−α−pf+ps)

(1−α)(1−pf )

E.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

EΠU†
f (x, q) =


EΠ2(x, q), if x

q ≥ pf (αpf−ps)
(1−pf )(1−α)w + 1

EΠ9(x, q), if r3 < x
q <

pf (αpf−ps)
(1−pf )(1−α)w + 1

EΠ7(x, q), if 1 ≤ x
q ≤ r3.

The potentially feasible solutions are (x2, q2), (x9, q9) and (x7, q7). We discuss the feasibility conditions for

(x9, q9) in E.2 below.
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E.4) Suppose r3 < x
q ≤ pf (αpf−ps)

(1−pf )(1−α)w + 1: The firm’s expected profit function is given by EΠ9
.
=

∫ w(x−q)

pf (
pf−ps
1−α

−pf )

0 [pf (1− pf−ps

1−α )y+w(x−q)]dF (y)+
∫ q

1−pf

w(x−q)

pf (
pf−ps
1−α

−pf )

pf (1−pf )ydF (y)+
∫ αpf q−w(αx+(1−α)q)

αpf (1−
pf−ps
1−α

)y−(1−pf )w

q
1−pf

[pfq+

w
α ((1− pf )y − q)]dF (y) +

∫ q

1−
pf−ps
1−α

αpf q−w(αx+(1−α)q)

αpf (1−
pf−ps
1−α

)y−(1−pf )w

[pf (1− pf−ps

1−α )y + w(x− q)]dF (y) +
∫ x

1− ps
α
q

1−
pf−ps
1−α

[(pf − c− δ −

w)(1− pf−ps

1−α )y+(c+δ)q+wx]dF (y)+
∫ x

1−pf
x

1− ps
α

[pf (
(1−pf )y−αx

1−α )−(c+δ)(
(1−pf )y−αx

1−α −q)+w(
x−(1−pf )y

1−α )]dF (y)+∫ +∞
x

1−pf

[pfx− (c+ δ(x− q)]dF (y)− cq − cmx.

The FOCs for the unique interior solution are

∂EΠ9

∂q
= δ − (c+ δ)q

1− pf
− (pf (αpf − ps)(αpf − w)− (1− α)(1− pf )w

2)q

(1− pf )((1− pf )(1− α)w − αpf (1− α− pf + ps))
+

(1− α)w(αpf − w + αw)(x− q)

(1− pf )(1− α)w − αpf (1− α− pf + ps)

− (1− α)2w2((1− pf )q

(1− pf − α+ ps)((1− pf )(1− α)w − αpf (1− α− pf + ps))
− (1− α)w2(x− q)

pf (αpf − ps)
− q(αpf − ps)(c+ δ)

(1− pf )(1− pf − α+ ps)

∂EΠ9

∂x
=pf − c− δ − cm− (pf − c− δ)x

1− pf
+

w(αpf − w + αw)(1− α)(x− q)

αpf (1− α− pf + ps)− (1− α)(1− pf )w)

+
(1− u)w2(x− q)

pf (αpf − ps)
− (ps − α+ α2(1− pf ))(pf − w − c− δ)x+ 2(ps − αpf )(αpf − w)x

(1− pf )(α− ps)(1− α)

+
(αpf − ps)(1 + α)(c+ δ)

(1− pf )(1− α)(α− ps)
x− pfx

1− pf
+

α(c+ δ + w)x

α− ps
+

(ps − αpf )w(αpf − w + αw)x

(α− ps)(αpf (1− α− pf + ps)− (1− α)(1− pf )w)

The interior solution (x9, q9) is feasible iff x9, q9 ≥ 0, ∂2EΠ9

∂q2 < 0, ∂2EΠ9

∂x2 < 0, ∆9
.
= ∂2EΠ9

∂q2 · ∂2EΠ9

∂x2 −
(∂

2EΠ9

∂q∂x )2 > 0 and r3 < x9

q9
<

pf (αpf−ps)
(1−pf )(1−α)w + 1
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EC.3. Proofs for Lemma 3 and Proposition 9

Proof of Lemma 3: We first prove (ii). Based on the analyses in sections EC.1 and EC.2, we can see that

when w ≥ αpf (i.e., Region A), the focal firm upcycles all deadstock fabric under any realized market size

y. When w ≤ α(pf − c − δ) (i.e., Regions B and C), the firm does not upcycle all of its deadstock fabric

under some values of y, so that there exists deadstock fabric in expectation.

When α(pf − c− δ) < w < αpf (i.e., Regions D and E), the firm upcycles all deadstock fabric under any

realized market size y if and only if (iff) (x2, q2) is the optimal solution. Note that this solution is feasible iff

w ≥ δpf (1−ps/α−α+αpf )
δ(pf−ps/α)+(pf−c−cm)(1−pf )(1−α) − c−δ. Also note that when (x2, q2) is feasible, (x8, q8) and (x9, q9) are

not. Hence, it suffices to consider only the case when (x2, q2) and (x7, q7) are feasible solutions, and show

that the former dominates when w is sufficiently large. To do so, we prove that dEΠ7(x7,q7)
dw < dEΠ2(x2,q2)

dw , or

equivalently (by inspecting the profit functions in EC.2), ESU†(x7, q7) < ESU†(x2, q2). Now, for given x and

q, let S0(x, q)
.
= min{x− q, x− (1− pf−ps

1−α )y,
(x−(1−pf )y)

+

1−α } denote the amount upcycled if the firm upcycles

all leftover deadstock fabric. Clearly, ESU†(x7, q7) < ES0(x7, q7). Moreover, since ES0(x, q) increases in x

and decreases in q, we have ES0(x7, q7) < ES0(x2, q2) if x7 ≤ x2 and q7 ≥ q2.

To prove x7 ≤ x2, we use q̂7(x) to denote the solution to ∂EΠ7(x,q)
∂x for given x. For the solution (x, q̂7(x))

to be feasible it needs to satisfy q̂7(x) ≥ x/r3. Substituting this condition into ∂EΠ7(x,q)
∂x yields

∂EΠ7(x, q̂7(x))

∂x
≤
(

w2

pf (α− ps)
+

(w − α(pf − c− δ))(αpf − ps)

(1− α)(1− pf )(α− ps)

)
x+ pf − c− δ − cm − (pf − c− δ)

x

1− pf
.

Since

∂EΠ2(x, q)

∂x
=

(
α(pf − c− δ − w)

1− α

(
x

1− ps/α

)
+

(w − α(pf − c− δ)

(1− α)(1− pf )

)
x+ pf − c− δ − cm − (pf − c− δ)

x

1− pf
,

the difference between the two equations above is

∂EΠ7(x, q̂7(x))

∂x
− ∂EΠ2(x, q)

∂x
=

w

α− ps
(
w

pf
− α) < 0.

Thus, substituting x2, which satisfies ∂EΠ2(x,q)
∂x = 0 into ∂EΠ7(x,q̂7(x))

∂x would result in ∂EΠ7(x2,q̂7(x2))
∂x < 0.

This implies x7 < x2. We can show q7 > q2 similarly. This concludes the proof.

For (i), The firm’s expected profit function under the upcycling option is:

EΠU†(x, q) = pf · Emin{DU†
f (SU†(x, q, Y )), q + qU†

δ (x, q)} − cmx− cq − (c+ δ)EqU†
δ (x, q, Y ) + wESU†(x, q, Y ),

where SU†(x, q, y) and qU†
δ (x, q) are as described in section EC.1. For any given w, if the firm does not

engage in quick response, then it would choose x = q = xB and obtain the benchmark profit EΠU†(xB , qB) =

EΠB(xB , qB), which is invariant in β and w. Note that EΠU†(x, q) is continuous and differentiable in x and

q. Further, by inspecting the expected profit functions (see EC.2), it is easy to see that for any given x, q,

EΠU†(x, q) increases in w and decreases in δ. Therefore, by the envelope theorem, EΠU†(xU†, qU†) increases in

w and decreases in δ. Since the firm engages in quick response if and only if EΠU†(xU†, qU†) > EΠB(xB , qB),

it follows that there exists a threshold δ̄U†(w) such that this happens if and only if δ < δ̄U†(w), and the

threshold δ̄U†(w) is increasing in w.

Proof of Proposition 9: The analyses in EC.2 show that there are five solution regions. We prove

the result in every region. Specifically, in each region, we consider each feasible solution (xi, qi) and show

that the result applies, i.e., xi ≥ xQ and qi ≤ qQ.
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In Region A (i.e., w ≥ αpf ), the potentially feasible solutions (aside from (xB , qB)), are (x1, q1) and

(x2, q2). First suppose that (x1, q1) is the optimal solution. This solution is obtained by solving ∂EΠ1(x,q)
∂q = 0

and ∂EΠ1(x,q)
∂x = 0, and is feasible only if ∂2EΠ1(x,q1)

∂x2 < 0. We compare (x1, q1) with (xQ, qQ) in two possible

cases.

First, when δ < δ̄Q, recall that xQ

1−pf
=

pf−c−δ−cm
pf−c−δ and qQ

1−pf
= δ

c+δ . We can rearrange the terms in
∂EΠ1(x,q)

∂x to get

∂EΠ1(x, q)

∂x
= −(pf − c− δ)(

x

1− pf
) + pf − c− δ − cm +

(w − α(pf − c− δ))

1− α

(
x

1− pf

)
+ αpf

(x− q)α(1− α)

αpf − ps

− α(w + c+ δ − αpf )

1− α

(αx+ (1− α)q)

1− pf

> −(pf − c− δ)(
x

1− pf
) + pf − c− δ − cm.

The inequality holds because
(w−α(pf−c−δ))

1−α

(
x

1−pf

)
>

α(w+c+δ−αpf )
1−α

x
1−pf

≥ α(w+c+δ−αpf )
1−α

(αx+(1−α)q)
1−pf

. Hence,

∂EΠ1(x
Q,q1)

∂x > 0, which implies x1 > xQ.

Second, when δ ≥ δ̄Q, recall that xQ

1−pf
= qQ

1−pf
=

pf−c−cm
pf

. Substituting the equation ∂EΠ1

∂q = 0 into
∂EΠ1

∂x = 0 and re-arranging the terms yields

∂EΠ1(x, q)

∂x
= −pf

(
x

1− pf

)
+ pf − c− cm − δ +

w + c+ δ − αpf
1− α

(
x

1− pf

)
+

α(αpf − w − c− δ)

1− α

(
αx+ (1− α)q

1− pf

)
+ αpf

(x− q)α(1− α)

αpf − ps

= −pf

(
x

1− pf

)
+ pf − c− cm +

w + c+ δ − αpf
1− α

(
x

1− pf

)
− w + c+ δ − αpf

1− α

(
αx+ (1− α)q

1− pf

)
≥ −pf

(
x

1− pf

)
+ pf − c− cm.

Again, this implies x1 > xQ. We can use similar methods to obtain q1 < qQ.

Now suppose the interior solution (x2, q2) is the optimal solution. For δ ≤ δ̄Q, it is easy to see q2 < qQ,

and we have x2 > xQ because in this region, w ≥ αpf >
pf (αpf−ps)

1−ps/α−α(1−pf )
>

(pf−c−δ)(αpf−ps)
1−ps/α−α(1−pf )

. For δ > δ̄Q, we

compare (x2, q2) with xQ = qQ =
(1−pf )(pf−c−cm)

pf
. Observe that x2 decreases in δ while q2 increases in δ, and

thus there exists a threshold δ̄2 such that this solution is feasible (i.e., x2/q2 > r3) if and only if δ < δ̄2. It suf-

fices to show that at δ = δ̄2, x2 > xQ and q2 < qQ. This is equivalent to showing that as δ increases, when x2

crosses xQ from above (or when q2 crosses qQ from below), the solution (x2, q2) is no longer feasible. To do so,

we note that as δ increases, x2 crosses x
Q from above at δ =

(pf−c−cm)(−αpf (αpf−ps)+(α−ps−(1−pf )α
2)(c+w))

−αpf (αpf−ps)+(α−ps−(1−pf )α2)(c+cm)

.
=

δ̄x, q2 crosses qQ from below at δ =
(pf−c−cm)(1−pf )(1−α)(c+w)

(1−pf )(1−α)(c+cm)−pf (αpf−ps)

.
= δ̄q, and δ̄q > δ̄x. Thus it suffices to show

that x2/q2 < r3 at δ = min{δ̄x, δ̄y} = δ̄x. Since x2 = xQ at this point, this is equivalent to showing

xQ < r3 · q2, which simplifies into δ̄x >
(w+c)(1−pf )(pf−c−cm)

pf (1−ps/α)−(1−pf )(pf−c−cm) . This inequality holds if and only if(
(α−ps)

2

α − (α− ps)(1− pf )
)
(w + c) + (1− α)p2f (αpf − ps)− α(1− pf )(αpf − ps)(c+ cm) > 0, which holds

because in this region, w + c ≥ αpf and pf > c+ cm.

The proof for Regions B, C, D, and E follows similar procedures and are hence omitted.
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