Electronic Companion to “Waste not want not: The environmental implications

of quick response and upcycling”

In this document we provide supplementary analyses for the upcycling model with demand encroachment.
We first solve for the firm’s optimal decisions in stage 2 (in Section EC.1), and then analyze the firm’s
optimization problem in stage 1 (in Section EC.2). Section EC.3 presents the proofs of Proposition 9 and
Lemma 3 in the paper.

EC.1. Firm’s Optimization Problem in Stage 2

In Stage 2, given = and ¢ and realized market size y, the focal firm chooses S and g5 to maximize
1177(S, gs,y) = pr - min{D{"(S,y),q + a5} — em= — cq — (c + 8)gs + wS,

subject to the constraints S +¢s <z —¢q, S >0, g5 > 0.
For any given S, if & < 1 — py + ps, demand for the focal firm’s product is (see §4.3 of the paper)

_ (1 *pf)y Y3 7;5 > . (Pf:gs 7pf) if S< (% _ %)y
D(S.y) = D} (y) + D'(S,y) = EETE I ,
which simplifies to
DUH(s,y) = (L—ppy—aS if §< (Bl -y
(1— 2Py if § > (BIZE By

If « > 1—pys + ps, then demand for the focal firm’s product becomes

_ 1—pply— (=228 if S < (1—2)y
Ut - pyut T — ( Pr)y 1-ps/a a

0, if S>(1—

In either case, note that DfUT(S, y) weakly decreases in S and equals (1 — ps)y at S = 0. In the rest of this
document we present the analysis for &« < 1 — py + ps. The analysis for o > 1 — py + ps is the same (with
slightly different expressions) and hence omitted.

By Assumption 1 (i.e., w < py —c—9), the firm always prefers satisfying a unit of existing demand (via
quick response) over selling a unit of fabric (or doing nothing). That is, its optimal production decision in

stage 2 is given by ¢s = min{z — g, (D?T(S, y) —q)*}. Substituting this into the firm’s profit function yields
7Y(S,y) = py - min{ D} (S,y), 2} — ez — cq — (c+ §) min{x — ¢, (DY (S,y) — )T} +wS,  (EC.Q)

which the firm maximizes by choosing S, subject to the constraint 0 < S < z — ¢ — ¢s = min{z — ¢, (x —
DY1(S,4))*).

There are three cases, depending on how the realized market size y compares with x.

Case I) If (1 — py)y > 2 In this case, if the focal firm does not upcycle, it can use all of its fabric to
fulfill demand since D?T(O, y) = (1 — pys)y > x. Thus, since we assume py — ¢ — ¢ > w, the firm chooses
SUt(x,q,y) = 0. The focal firm’s profit is H;JT (SYT(2,q),y) =psx — (c+6)(x — q) — cq — cpa.



Case II) If (1 —py)y < = < (1 — £2)y: We have DUT(S y) < z for all S. In this case, the constraint
S<x— DUT(S y) is satisfied if and only if S < S, where § = 2= (ff)y < (Bf=£2 — B2)y Thus, the optimal
S satisfies 0 < S < min{z — g, M}. There are three subcases.

IL.a) If ax + (1 — a)g < (1 — py)y, the above constraint further simplifies to 0 < S < %, and it

is easy to check that ¢ < D?T(S, y) < x in this range. Thus, the profit function in Equation (EC.1) becomes

Y778, y) = pr DY (S, y) — emz — cq — (c +6) (DY (S, y) — q) +wS
=(ps—c—=0)((1—psly—aS—q)+ (pf —c)g — cmz + wS
=ps—c—0)((L—pr)y—q) + (pf —c)g—cmx + (w— (py —c—5)a) S.

The optimal solution is SYT(z,q,y) = 0 if w < (p; — ¢ — §)a and SYT(z,q,y) = % otherwise. When
SUT = 0, the focal firm uses some of its leftover fabric to satisfy its demand via quick response, and does
not sell the rest (i.e., there is unused deadstock fabric). When SUt(x,q, y) = %_gf)y, the firm uses some
leftover fabric to satisfy its own demand via quick response, and sells the rest to the upcycling firm.

So

(pf —c=0)((L—pp)y —q) + (pf — ¢)q — cmx, if w<(pr—c—0)a

1y (SYT (2, q),y) = _
(py —c=0)(x —q—SYI(z,q,9)) + (pf — )g — emz +wSYT(z,q), if w>(p;—c—d)a.

ILb) If ¢ < (1—ps)y < ax+ (1 —a)g, the constraint becomes 0 < S < min{z — ¢, == (1 pf)y} =z—
The profit function in Equation (EC.1) becomes

prDY (S y) = emz — cq — (c+ (D] (S,y) — @) +wS, if DYT(S,y) > q,

U
HfT(Say) = Ut . U+t
prf (S7y)_c7rlx_CQ+ws7 if Df (Say)<q7

which reduces to

(pr — =)L =pp)y —q) + (pf — ) — emx + (W — (py —c— ) S, if 0< 8§ < Lpv=g

(s, y) =
! pr(l=ps)y — cmz — cq + (w — apy) S, if Uopvd o g <y g

The optimal solution is SY(z,q,y) = 0 if w < (py — ¢ — &)a, ST (z,q,y) = % if (pf —c—9d)a <
w < pra, and SYT(x,q,y) = 2 — ¢ if w > pra. Note that in the second solution, DfUT(SUT(a:,q,y),y) =q
and SUT(x,q,y) < x — ¢, so the focal firm sells all of its finished goods, but there is leftover fabric that the
firm neither uses nor sells. In the third solution, D?T(SUT (z,q,v),y) < qand SYT(z,q,y) = 2 — ¢, so there
is leftover finished goods but no leftover fabric.

IL.c) If (1—ps)y < g, the constraint is 0 < .S < min{z—gq, M} = r—q, and we have D (S, y) < q
for all S. Equation (EC.1) reduces to

HS{T(S7 y) =p;(1—prly — aS) — ez — cq + wS.

The optimal solution is SYT(z,q,y) = 0 if w < apy and SYT(x,q,y) =  — ¢ if w > apy. In both solutions,
there is leftover finished goods. The first solution has leftover fabric (x — ¢) while the second solution does

not.



Case III) If > (1 — 22)y: In this case, the constraint S + D?T(S, y) < x is satisfied if and only if
S < x—(1—%=L)y (which is greater than (%=2 — E2)y). Thus, the optimal solution satisfies 0 < S <
min{z — ¢,z — (1 — B=L2)y}. There are again three subcases.

IILa) If ¢ < (1— pf P2 )y, the constraint becomes S < min{z — ¢,z — (1 — Z=L2)y} = o — (1 - H=Le)y,

1
and in this range, ¢ < D][{T(S7 y) < . Equation (EC.1) reduces to

V% (S, y) (pf —c= (A =pply—a) + (pf —)g = cma + (w—(py —c—0)a) S, if §<(H=L— L)y,
e (pr — c— 8)((1— BE=22)y — q) + (g — €)q — cmz + w8, if (BEE2 — Bo)y < § < g (1— B=2e

The optimal solution is SUT(z,q,y) =2 — (1 = 2=22)y if w > (py — ¢ — §)a. If w < (py — ¢ — §)a, the focal
firm compares S =0 with S =z — (1 — M)y We have SUT(z,q,y) = 0 if w < (l(pf)_xc_((i)(o‘apfp_f’f;y)y and
SUt(z,q,y) = x — (1 — B=L2)y otherwise. When SYT(z,q,y) = 0 there is unused leftover fabric that the
firm does not sell. When SUT (z,q,y) = = — (1 — B=22)y there are no leftover FGs or fabric.

IILb) If (1-2=L2)y < ¢ < (1—py)y, the conbtramt becomes 0 < S < min{z—q, z—(1-4=L2)y} = 2—q.

Equation (EC.1) reduces to

(ps —c— ) (1 —pp)y — @)+ (pf — ) — ez + (w — (py —c — ) S, if § < U=pav=a

H?T(S,y): pf(l —pf)y — emax —cqg+ (w — apy)S, if 7(1 PHY=a <S<m1n{(pf Ps — B )y, x — g},
pr(1 =By —cpr —cq+wS, if (HE By <S<az—q

[e3%

There are two cases. (i) If 2 —q < (4=2= — E= )y, then the optimal solution is SUT(x,q,y) =z —qifw > pra,
SUt(x,q,y) = % if (py fcf5)a <w < pra, and SUT(z,q,y) = 0 if w < (py —c— ). Solution 1 has
leftover FGs (q—D?T > 0) but no leftover fabric; Solution 2 has no leftover FGs, no quick response, and some
unused/unsold leftover fabric (z — ¢ — SYT(z,q,y) > 0); Solution 3 has no leftover FGs, some leftover fabric
used for quick response (D?T — ¢ > 0), and some unused/unsold leftover fabric (z — g — SVT(z,¢,y) > 0).

(ii) If £ —q > (=L —L=)y, there are three sections. When w > pya, the optimal solution is SUt(x,q,y) =
x —¢q. When (py —c—d)a < w < pra, the firm compares

1-prly—q 1-prly—q
H?T(i( 1)y ,y)=pfq—cmz—cq+w7( /)
« [0
with
Pr—p
5 (2 —q,9) = ps (1= 5 — ")y — ewz — cq +w(z — q).

The difference is

v, (L —prly—q U g, , w Pf—DPs
Hﬁ(+,y)—ﬂf*(x—q,y)=pfq—w(w—q+E)Jrg(l—pf)y—pf(l—{_704)9

By analyzing the sign of the difference, we find that the focal firm chooses SUT(z,q,y) = % if
a(z—q)+q a(z—q)+q aps(a—(1-225)y)

y= [ETEE v < 1—ps WS S pra(I- Ps)y
When w < (ps — ¢ — d)c, the firm compares

}, and SYT(x,q,y) = = — q otherwise.

177(0,y) = pr(1 = ps)y — emz — cq — (c+0) (1 — py)y — q)

with
Pf —Ps

0 (2 = q,y) =ps(1 - o Y emt —catw(z—q).

)y-



The firm chooses SUT(z,q,y) = 0 if ( 7 (E
SUT(z,q,y) = x — q otherwise.
III.c) If (1 — ps)y < ¢, Equation (EC.1) reduces to

)= (c+)1=pp)y > wlz —q) — (c + g, and

pr((1=pply — aS) —cq — e+ w8, if S <min{(H=L2 — B2)y, 2 — ¢},

Pf—DPs

T (S,y) = bip
pr(1—H=—")y — cq — cpmw +wS, if min{(5=7--2)y,2—¢} <S<z—q

Pf—Ps pg
T—a o

When y > (,fc;q), the optimal solution is SUT(x,q,y) = 0 if w < ap; and SYT(z,q,y) =  — ¢ if
w > apy.
When y < (pf,xp;q and w > apy, the optimal solution is SYT(z,q,y) =z — q.

_Ps
11—« @
When y < pff”%q&) and w < apy, the firm compares

( I—a o
1yt 0,y) = ps(1 — —cq —
7 (0,y) =pr(L —pply —cq — cmx

with
%)y —cq — e +w(x —q).

The optimal solution is SU(x, ¢,y) = 0 if w < % and SUt(x,q,y) = x — q otherwise.

05 (2 — q,y) = ps(1 -

Summary of Optimal Upcycling Decision in Stage 2

Summarizing the analyses above, we can conclude that for any given x, ¢ and realized market size y, there

exists a unique pair of thresholds Wi(x,q,y) and Wa(z,q,y) such that the optimal upcycling decision is

given by:
0 if w < Wl( T, q,Y )
SUT('r?q) = maX{Q%} if Wl(xquy) <w<W2(x7Q1y)7
min{z — g,z — (1 — Y=L )y, C=UIUTY i 0 > Wy (a, 4,9).

When w < Wi(x,q,y), the firm does not upcycle at all. When Wi(z,q,y) < w < Wa(zx,q,y), the firm
upcycles only a portion of its on-hand fabric such that it retains enough demand to sell out its inventory of
finished goods. When w > Wy (z, g, y), the firm upcycles as much on-hand fabric as possible, so that every
unit of on-hand fabric is either upcycled or used to satisfy demand via quick response.

The thresholds Wi (z, q,y) and Wa(x,q,y) are illustrated in Figure EC.1, and described in more detail

below. Specifically, there are six cases, as illustrated in the six sub-figures of Figure EC.1.

1_17
We define the following expressions: w1 (x, q,y) = %, wo(x,q,y) = Zﬁ% (a)q (= pf;z’ ws(x,q,y) =
pr(a—(1— =) y)+ (s —c—8)(1—ps)y—q) L (pr—c—8)(aps—ps)y . . - aps—De N
o )+ R g 2
ps(ops—ps) and rg = 1 4 —- ORI ~Ps

a(l—a)(1—ps)(ps—c—9)’ a(l—a—ps+ps)”

Case (a): When 1 < 2 < ry, we have al—o)(@=q) « _q < a2zt(-0)0 o 2 41 also —2— <
q ) apf—ps 1-py 1—py 1-ps>’ 1-ps/a
azJ{(flp_fa)q < ; p‘;,ps. Hence, the thresholds are: Wp = Wy = wi(x,q,y) for y < %7 W, =
: T Tl : s
Wy = apy for y € [a(la_pi),(;;q)» 1,qpf]7 Wi = a(py —c—6) and Wy = apy for y € [—1fpf77aw"1'(fp;a)q],
Wi =Wy =a(py —c—90) forye [%ﬂ;a)q,l%ﬂ_],and Wy =W,y =

4



Case (b): When r1 < £ < min{rs, 73}, we have ¢ < dl=d)@=g) o azt-a)s o _z_ ,nd gls0

1-py — apf—ps - 1-py — 1-py’
+(1—
T Ta < oz 1£pfa)q < 1_,,?,?5 . Hence, the thresholds are: W7 = Wy = wy(z,q,y) for y < 1fpf, Wy =

alpy —c—6) and Wo = wa(z,q,y) for y € (1_qpf, a(la;?)_(]f:q)], Wi = a(py — c—90) and Wy = apy for

a(l—a)(z— ar+(l—a ar+(l—«
y € (MRt 2 Umali) Wy = We = alpy — ¢~ 6) for y € (SFUZ21 2] and Wi = Wy = 0 for
y> 5

1—pf :

Case (c): When rp < % < r3, which is only possible for ¢ + 6 < %, the thresholds are the same

. (py—c—6)(az+(1-a)q)—ps (9—(1- =2 )y)
as in Case (b) except that Wy = Wy = w?(x, q,y)) for y € (1jpfv s (pffcfzs)(lipf) 1 .
Case (d): when g > 3 and e+ < % (ie., r2 <rg), we have =1 < 1—%%“ S Tge S T

and also 1_;;,1,5 < Mt(_lpffa)q < 157a- The thresholds are: W1 = Wy = wi(z,q,y) for y <

q
1—a 1_pf7
Wi = Wy = ws(z,q,y) for y € (21—, —1=-], Wi = Wa = wa(z,q,y) for y € (% ﬁh Wy =

1_pf7 17:Df—175 _Pf=Ps I 1—p
1— -«

Wy = a(py —c—96) forye(%,ﬁ],andW1:W2:Ofory> 1fpf.

<rgandc+d > ﬁﬁ(ﬁ% (i.e., 73 < 72), the thresholds are the same as those in
_ pffps

Case (d) except that W7 = a(py—c—0) and Wy = wa(x, ¢q,y) fory € (1fpf7 (pf_6_5)(Mg;:jz?)?fjg;(l l-co )y)]

Case (f): when % >ryand ¢+ 6 > % (i.e., r3 < 72), the thresholds are the same as those in
Case (d).

Table EC.1 summarizes the optimal upcycling decision SUT(z,q,v), the corresponding profit function,

: s < L
Case (e): whenrs < %

and the deadstock outcomes under different values of z, ¢, y, and w.

w w w
om n n m
ETly(x,q) ETly(x,q) (Eﬂ.(mq)
apy o apy — apy
~ETlg(x,q)
Ell;(x,q) Wa I Wz (Ena(x,q)
ETly(x,
atoy—c-8) —— oty —c-9) D e i
- [Emca
e ) Wy LEMs () - I
FEN3(x,q)
o x-q ] axtl-@g _x D 0 q X4 axt(-ag _x D 0 _a_ x-q _ a+(-aq _x D
R R =5 -5, T-pr Ty B T-p, =7 Ty B =7 T-p
X T 3 T
(a) ! (b) 1 < < min{ry,r3} (c) re < T3
w w w
Cm Cm Cm
FET,(x,q)
apy ETl,y(x,q) apy 2nd apy FET;(x,q)
w s, )
a(ps—c—8) a(py —c—8) K alps—c—98)
’ - (s 4 ) - [Re) ENlg(x,q)
2 3
FENL, (x, q) L, 7 ws Wy Ellg(x,q)
" Elly(x,q) Ellse.) ' BTy (x,0)
A= ” b 1=l @ ”r A @ o
z z x
(d)5>rgﬁr2<r3 (e)r3<agrgﬂr22r3 (f)g>r20r22r3

Figure EC.1: Optimal solution regions in stage 2. In each figure, SY(z ¢,y) = 0 in the

white area, SUT(z,q,vy)

—ps r—(1—
(1— p{_z )y, ( (l_z;f)y

maX{O,%} in the blue area, and SYf(z,q,y) = min{zr — ¢,z —

)y s
} in the gray area.




Conditions SUT(m,q,y) Leftover Leftover Profit function l'[fo(S7 y)
FG fabric
ye(ﬁv‘*’w) 0 0 0 pr(l —pf)y —cqg—cmz
T <oy oy e (e2tl-o)g o
¢ <ra:ye( =5, 1*Pf] e—(1—p )y
- - . l—pf' 0 0 (pf—c—=8)(x—q—9)+ (py —c)g — cmz +wS
q > T3t yG(wvm]
L >rgy€(—sl—", —2% ] Pf—Ps Pf—Ps
w > Wa q L_Pf=Ps 1-ps/a z—(1--4—")y 0 0 (pg—c=8)Q1—- =" )v—a)+pr—cla—cmz+wsS
1—a
] l—a)(z—q) act(l—
%S'rg. y€(a<ap;<>,(zsq 1az1(7pfa)q] T —q >0 0 pr((1 —pg)y —aS) —cmz — cqg + wS
Z < gy e (0, 2zma))
q apf—ps e g <0 o e pffps)y e — cq + w8
z ot 1 _a - A —EmT —
g >3y e (o, R ] «
T T I—a
Wi < q az+(l—a)q (17pf)y7(1
w < Wy yE(l_pf,il_pf ) —= = 0 >0 Pfq — cma — cq + wS
v € (1757 1=55] 0 0 >0 (P —c= (L =Py — ) + (pf — g — cma
w < Wy
yE(O,#] 0 >0 >0 pr(l—pfly —cqg—cme

Table EC.1: The firm’s optimal upcycling decision, deadstock outcomes and profit function in

stage 2.




EC.2. Firm’s Optimization Problem in Stage 1

The analysis in Section EC.1 provides the firm’s optimal production and upcycling decisions in stage 2, for
given z, g, and realized market size y. In stage 1, the firm chooses  and ¢ to maximize its expected profit.
As we can observe from Figure EC.1 and Table EC.1, the specific expression for the firm’s expected profit
function may vary depending on x and ¢, as well as the price/cost parameters (e.g., whether w > apy).
Overall, we distinguish five regions on the w-§ parameter space. In each region, the firm chooses (z,¢q) to
maximize its expected profit IEHJ({T (z,q). The specific conditions for each region and the relevant expected
profit functions are summarized in Table EC.2. Note that the condition ¢+ 4§ < % is obtained from
rg < rg. Figure EC.2 illustrates the regions. Note that the firm adopts full upcycling when ]EH?T(:U, q) =
EIl; (x,q) or I['EH?Jr (z,q) = Ells(z, q) and selective upcycling in all other cases.

The specific expressions of the expected profit functions, i.e., EIl;(x, q) for ¢ € {1,2,...,9}, and the

feasible solutions in each region are derived in the remaining part of this section.

Region Expected profit function ]EH?T(I, q)
w > apf
EIl (z,q), if 1< Z <
T T
(Region A) Elly(x, q), if f > r3.
pf(aps—ps)
c+d6 < (ICTJLP;)OUJSQ(pf7C75)
Bllg(a,q), if 251 < FEOPLCP)

. Ut _ . pglapf—ps) z— (pg—c=8)(apf—ps)
(Region B) BT, '(x, q) = { ETl4(x, q), if WI—p)A—a) <E#Hic< Tw—a-p;¥rs)

. — (pg—c—38)(apf—ps)
z—q f £
Ells (@, q), if =% > w(l—a—ps+ps)

pylapy—ps)

c+52mﬁw§a(pffcfé) ) 50 )
) . _ py—c—38)(apy—ps
Ellg(z,q), if 1< %4 < Tw—a-p;tps)

. Ut _ . (pp—c—8)(aps—ps) z— pylaps—ps)

(Region C) EM; (2 q) = \Ells(z,0), i ey oy < 9% < toppt-arw

Ell5(z,q), if *79 > _pylopy=ps)

2 Uppd-—aw

apf(l—a—pf+ps)} <w < apy

max{a(py —c—9), —aT—ea-rp

Ellz(z, q) if % > r3
. pylapy—ps)
En)‘{uz,q): Ellg(z, q), if WJFI <<y
pylaps—ps)

BIl7(z,q), if 1<% < Tppi-aw +1.

(Region D)

apf(l—a—py+ps)
alpf —c=8) <w< W)
pflapy—ps)

Blla(e,0), i £ > L0500 1
Ut _ . pf(aps—ps)
(Region E) Bl (@ @) = \Ellg(z,q), if r3 <2< <Ti‘pf>{1fas>w +1

EIl7 (z,q), if 1< < rs3.

Q8

Table EC.2: The firm’s expected profit function in stage 1.



w
Cm w
Cm
Region A
Region A
apy
apy
i Region D
Region D | ap;(1—a—p; +ps)
a(py —c)|- (1-a)(1-py)
- a(ps —¢)
Region E
Region B ! " ReglonE ; ‘
Region C T Region C
0 prlepr—ps) proc§ !
1-a)(1-p;) 0 pr-c §
pr(aps—ps) pr(aps—ps)
a) c < A —+L % b) ¢ > Z—~L =
(a) ¢ < (1—a)(1—py) (b) (1—a)(1—py)

Figure EC.2: Solution regions in stage 1.

In each of the five possible regions on the (w,d) parameter space, we derive the firm’s expected profit
function ]EHJ‘UT(.%‘, g) in stage 1 based on the results in Section EC.1. Then, in each region, we summarize
the firm’s optimization problem and present the feasible solutions and feasibility conditions. We assume

D ~ Uniform|0,1] in this analysis.

Region A: w > ap;
A.1) Summary of the optimization problem: We can show that the firm’s expected profit function is
given by

Ell; (x,q), if 1<
Ells(z,q), if

<r
ENY (2, q) = -

= I8

- >

x
q 3

The expressions for EIl; (z,¢) and Ells(x,q) are presented in A.2 and A.3, respectively. To find the (z,q)

that maximizes EH?T(L q) (subject to the constraint x > ¢), we can compare the optimal solutions for two

constrained maximization problems: (i) max, qEIli(z,q) subject to the constraint 1 < £ < r3, and (ii)

max, , Ells(z, ¢) subject to the constraint £ > r3. We note that the corner solution £ = r3 is never optimal
sq q

(unless it coincides with an interior solution) because at £ = r3, EIl; (z, ¢) = Ellz(z, g), 8Ené(w’q) = %Ellx(z.9)

q dq
and aEHgiz’q) = amn;ix,q)' We denote the unique interior solution for max, , EIL;(x,q) by (x;,q;), i € {1,2}.

Similar notations are used for i € 3,4, ...,9 throughout this section.

Thus, the potentially feasible solutions to the firm’s optimization problem in Region A are: (z1,q1),

B _ (=ps)(ps—c—cm)
pr

the feasibility conditions of each of these solutions (provided in A.2 and A.3) and, if multiple solutions are

(72,q2) and (z8,¢P), where 28 = ¢ . To find the global optimum, it suffices to check
feasible, compare their corresponding expected profits.
A.2) Suppose 1 < % < r3: Based on our analysis in Section EC.1, the firm’s expected profit function in stage

Pf—Ps  pg az+(l—a)g

LisEy(z,q) = [y =7 ° [pp(1=H=L)y+w(z—q)ldF(y)+[ .7 [pr(1—ps)y+(w—psa)(z—q)ldF (y)+

Pf Ps _ Ps
—a o



[ h ol —c=8)(@—q)+pra—(py—c—b6—w) =0V )G P (y +f+°° [prz—(c+0)(z—q)]dF (y) —cq—cmz.

T—py

Differentiating the function with respect to ¢ and x and using Y ~ Uni form[(), 1], we obtain

OEIl, x—q ar+ (1 —a)q
o Wl e me e e
OETL; T —q o ax+(1-—a)g, wH+c+d—py, =
5 = P ) T (s —w—e=d)( Ty 1 (17pf)+pf—c—6—cm.

-« «@

Solving the first-order conditions (FOCs), aEHl =0and % = 0, yields the interior solution (1, ¢1), which
is unique because the two derivatives are both linear in « and gq.

We can also obtain the following expressions:

O’EIL; (1 — a)py N (1—a)(aps —w—c—9)

9> oaps —ps 1 —py ’
O’EIL, (1 — a)py N 14+ a)(w+c+6)—(1+a+a?)ps

pre apy — ps 1—py 7
O’EIl, 7042(1 —a)ps n alapy —w —c—9)

dxdq — apy — ps 1—py ’
A= 0%EIN, 0°EIl, (62EH1 o —0(1—a)p} (w+c+6—app)(ps —w—c— 5)7

dg*>  Ox? dz0q (1 —ps)(aps — ps) (1—ps)?
o g = (L —ps)laps —ps) (0(c+cm) — (s —c —cm)(w+c—apy))
(aps —w—c—0)(py —c—w—20)(apy —ps) + (1 — a)a?p}(1 — py)

Overall, the interior solution (z1,¢q1) is feasible if and only if (iff) z1,¢1 > 0, & Egl < 0, %EEII < 0,
A1>Oand1§%§r3.

A.3) Suppose % > r3: The firm’s expected profit function in stage 1 is Ells(x,q) = fol_ = [pr(l —
M=)y +w(z —g)ldF +f1 il (= H=20)y = (e40) (1= H=2)y —a) +w(z — (1= H=2)y)ldF (y) +

1 o

JZE (o~ 6)(e~a)+pya—(py — b w) =2 aR(y) + I Ipso=(c+8)(@=a)dF (y) = cg—cma

1—p

The FOCS for the interior solution are:

OEIl, q
Tq ——(w+c+5)(@)+6—0,
OEIl, oa(pf—c—§d—w) x pf—c—0—w, =
= - - 5_ - - O'
oz 11—« (1—p5/a)+pf ¢ m 1—« (1—pf)
Solving the FOCs yields the unique interior solution:
K} Dt — P —c—0—cp)(1l—a
g = 1-= P ), To = (b 1)( <)x
w+c+ o l-«a (pf—c—0— “’)(Wfl—ps/a)
Note that da]Egb <0, 38]?12 = (pf_f:j_w)(k;b,/a — 1fpf) < 0 because o € (5—;,1), and 882%12 = 0.

Therefore, solution (x3,g2) is feasible if and only if 2—; > rj.



Region B: w < a(py —c— ) and c+5<% (i.e., 2 < 13)

B.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

Ell;(z,q), if &-¢ < brlops—ps)

¢ = w(l-ps)(Il-a)
Bl (z.0) = \Blly(z,q), if GRS < o < Cresoncn)
o) it > Gl
Similar to the case in Region A, we can rule out the corner solutions % =1+ % and % =

1+ %. We can also show that the interior solution to max, ,EIl4(x, q) is never optimal. Thus,

the potentially feasible solutions are (z3,q3), (¥5,¢5) and (22, ¢?). We discuss the feasibility conditions in
more detail below.

B.2) Suppose % <1+ %, which is obtained from w < ws(x,q, 1_qpf) = & p;)((‘){pfpf’)’a)q ok

w(z—gq)

» Pf—Ps —p
The firm’s expected profit function in stage 1 is EIl3 = |, F= [pr(1 — B2y 4+ w(z — q)|dF (y) +

= =5 +

S bew  pr=ppydF ) + [ s (1 =pp)y = (e 0)((1—pp)y —@)ldF () + [ 2 [pro —(c+0)(w -
Pf(p{:SS —pf)

¢)]dF(y) — cq — ¢mx. The FOCs for the interior solution (z3,¢s3) are

=f—-—w| —— ] —(c+§ =0,
dq <pf(w—pf)> (el )=0

OREII w(x — x
3553 =w <M> +pf_0_5_Cm—(pf_0—5)(1_pf) =
We note that

O’Ell;  w?(l—a) c+o

d¢>  pslapr —ps) 1—pj’
O’Ell;  w?(l—a) pr—c—2¢

dz2  pyglaps — ps) 1 —py
O’Ell;  w?(l—a)

9z0q — pylaps —ps)’
Ay = O°Ell; 0°EIl; (82EH3 2 w?(1 — «) (pr—c—0)(c+9)

9¢*>  0x? dz0q (apg —ps)(1 —py) (I —ps)?

s gs = (cpy — (c+6)(c+cem))(aps —ps)(1 — py)

(py —c—0)(c+d)(aps —ps) — (1 —a)(1 = pp)w?

The interior solution (x3,¢s) is feasible iff 3,3 > 0, & ]EH* <0, %EEI* <0,As>0and 1< % <rg.

B.3) Suppose 1+ % <T<1+ %m , where the upper bound is obtained from w <
w(QC q)—(c+d)q

Pf(ﬁ*?f) (e+8)(1—py) [p
(1=

q _ (py—c=8)(aps—ps)q.
w3(z, g, 1_PiPs )= (I—a—ps+p- )(qu)

1—a

s T—' “+o0
by +w(e —q)dF (y)+ [ wemp-eeng  [Pr0=poy— (e 01 =py—OldF W)+ [ = [pro—
Pf( T—a *Pf) (e+8)(1—pyg)

(c+9)(x — q)dF(y) — ¢q — cmx. We have

LY S e Y |
dq pr(H=4 —ps) — (c+0)(1 —py)

The firm’s expected profit function is EIl, =

10



T
1—pf

OEIL, :w< w(z —q) — (c+0)g )
pf(pf Ps

—c—0—cCm— —c—90
O —ps) = (c+0)(1 —m)) o (s 3

The interior solution is not feasible in this case because 2 EH“ > 0 always (note that ¢+ 4§ < prlopr=pa) iy

(1—a)(1-py)

Region B).
E—Ps
B.4) Suppose ¢ > 1+ % 'The firm’s expected profit function is Ell5 = fo e pr(1 -
. - 7Pf ps
PE )yt w(e—q)ldF () +I¥( T (g — o= —w) (1= HEE )y o+ (e 0)q +waldF (y) +
1=
J wa (1 =ps)y = (c+6)(1—pp)y — DVdF(y) + [ [psa — (c+6(x — q))dF (y) -
Pf—Ps 1-py
_pf)‘*'w(l_f)

wg—c—5)(¥
cq — Cp . The FOCs for the interior solution are

8EH5 q
9a (w+c+ )(l_p{:gs) ;
OEII5 wT T
= +pr—c—0—cy — —c—90 =
ox ((pr(S)(pf_ps —py )er(l:l?{_ps)) pr—c c (pf c )(1—pf)

We can check that 88E1;5 < 0, 8855[5 < 0 and %;quf’ = 0. Thus, the interior solution (x5, gs) is feasible if

(ps—c=6)(aps—ps)
and Only lf 5, Qg5 Z 0, and % > 1 + W

Region C: w < a(py —c—0) and c—|—5>(ﬁf(g)p(7flz;;) (i.e., 72 > 13)

C.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

( c—6)(a s)
Ell3(z,q), if 1< %4 <%
Ut _ (oy=c=0)ap;—ps) _ g o pilon;=ps)
]EHf (xaQ) EHG(%C] ) if w(lfafpf+p3) < q < (17pf)(17a)w
e e (aps—ps)
Ells(x,q), if 5% > Lot

~

As in Region A, we can rule out the corner solutions & = 1 4 &-¢=9)(ap;=p:)
q w(l—a—ps+ps)

Thus, the potentially feasible solutions in Region C are (x3, ¢3), (%6, ¢s), (z5,¢5) and (z

=1+ a5 i ow
q?). The feasibility

conditions of (z3,q3) and (5, qs) are similar to those discussed in Region B and hence omitted. In C.2 we

z
q
B

discuss the feasibility conditions for (xg, gs).

(pg—c—0)(aps—ps) M < (Pf(apf*ps) .

C.2) Suppose wl—a—p;+p:) I—py)(1—a)w*

Based on our analysis in EC.1, the firm’s expected
(=) (e

profit function is Ellg = fopf(apffpb pr(1 — pf ps)y + w(z — q)]dF(y fw('r wi-o Pr(1 — pp)ydF(y) +
pf(apf Ps)

w(z—q)—(cté)q

_qd—a)

pp (U2 p oy (ero)a-pp) a—p; TP .
S ' Pl (L=pp)y—(c+8)(L—pp)y—a)ldF(y)+ [ plfff oerna  Pr(I-HEE)y+
f pf( T—a *pf) (c+8)(1— Pf)
(pp—c—)(PLZL2 b w2409,
w(e — QdF(y) + [ = [(pf —c =6 —w)(1 = H=22)y + (c + d)g + waldF(y) +
l—a—-pr+ps
S we [ps(L=ps)y—(c+0)((1L—ps)y—q)ldF (y +f pgz = (et0)(x —q))dF (y) -

Pf—Ps
I—«a

pp—e=) (T2 ) twa- )

cq — CmX.
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The FOCs for the interior solution (xg, q¢) are

OBLs s (ctdtwlg(l-a) (wtctd)(wx=q) —(c+dq) (c+8q w@-g)(l-a)
9q L—a=pr+ps  pr(H= —py) —(c+0)A—ps) L—ps pylaps = ps)
OBy _wP(l-a)a—q) (- a)w(e—q)~(c+djwa) ok
Oz prloapy —ps)  prlapy —ps) = (c+0)(L—pp)(l —a) * (pyr —c—0)(apy —ps) +w(l —a —pg+ps)
—|—pf—c—(5—cm—(pfl_cp_f§>x:0.

.92 2 2
The interior solution (xg, gg) is feasible iff x4, g5 > 0, o ]EHG <0, ol EHG <0,Aq = 68%1;6 . aaIil;[G —(aafg;“ 2 >0

(pg—c=96)(apr—ps) e ps(apr—ps)
and 1+ i oy < e <1t a5t aw

apr(l—a—ps+ps

Region D: max{a(ps — ¢ — ), A=) (=p)) )} <w < apy

D.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

Elly(z,q) if
U . Qapf—DPs x
]EHfT(x,q) = 4 Ellg(z,q), if (fj;ﬁ% +1< g <rs

Elly(z,q), if 1<2< 2lopebel i

>3

PTS

Similar to the previous regions, we can show that the potentially feasible solutions are (x2,¢2), (s, gs),

($7, Q7), and (xBa qB)

w(z—q)

Py=Ps _
< pe(oPr=Pe) 4y The firm'’s expected profit function is Ell; = pf( == *) pr(1—

D.2) Suppose 1 < % = pf)(1 o .
PPy (e — @))dF(y) + [y pzi(m o (L= py WdF(y) + [ o™ [pra+ 2((1L=prly — 9))dF(y) +
ps( f )
f f
ﬁ — —ax (1 ax rz—(1— +oo
Joil mqmféii%%¢4»—wc+5xggl%%34——q»+w<—4%%¥Hndfwy»+fi%;@fz—<o+6xx—qﬂdF@o—

c¢q — ¢pmx. The FOCs for the interior solution are

3M”:_w<w“‘”>+@rw—6—wwm+“‘“”wwm—wx )=,
ps( ps)

0q Bf=Ps o 1—py a1 —pyf

8Mb:w(Zﬁ;w>—@rwwé—wwm%w%+@rf—®ﬂ— L)l =
ps( —ps) L

11—«

12



Note that

O*Ell; w? apf —w+ (c+0)(1 —a)
0 pp(BEE —py) 1 —py ’
O’EIl; w? 1+a)(pr—c—0)—w
02 py(BE —pp) 1—py
O*EIl; w? alpf —c—0)—w
dadz— pp(HE —py) L—ps
p, - PRI OB | PB,  wpy  (—aw’  (pp—c—d)(etapg+d)
0g*  Ox? dqdx (L=pp)? (1 =ps)laps —ps) (1-ps)?

(1 —py)lapy —ps)[d(c+cm) — c(ps — ¢ — ¢

Ty —qr = .
(1= a)(1 —pp)w? +wps(apy — ps) — (apy — ps)(ps — ¢ — 6)(aps + c+0)
The solution (x7,q7) is feasible if and only if z7,q7 > 0, 83]E£[7 < 0, “32@?7 <0, A7 >0and 1 < % <

ps(aps—ps) +1

(I-pp)(1—a)w
w(am+(1—a)q)foépfq

R 1
D.3) Suppose m%—i—l < ¢ < r3: The expected profit function is Elly = fo(l 4 AN S )[pf(l—

az+(1 a)q
—Ds T I-py 1-psly—ax
2P Yy w(z — Q)JdF () + [ ok anga Pra+2((1—ppy—g)ldF(y f oy [P (0BT

A—ppw—apy(1- 2202

(c+ 0) (A — @) + w(=ZAF @) + [ 2 [pp = (o4 0)(@ = ))dF(y) — cq = em.

e}

The FOCs for the unique interior solution are

OEIls w w(azr+ (1 —a)q) — aprq w, ax+ (1 —a)g
= +pr—— +(pf—c—0——)(——————)+0=0,
TR Y ((1 —pp)w —app(1— B=E) e A T

OEIlg w( w(azr + (1 —a)g) — apsq >+a(pf05w/a) ax+(1fa)q)
ox (]_—pf) —apf(]_—pf p) l1—« 1—pf

(pf—c—é—w)( x =0,
11—« 1—py

+pr—c—0—cm—

2 2 2
O 8]EH3<0 alEHs<0 A8;8EH3.8EH3_(8EH8)2>0

The interior solution (xg, gg) is feasible iff xg, gs > 92 a2 Dq01

and PR 1< <

. . o aps(—a—p;+ps)
Region E: a(pf —c—0) <w < (I—a)(1—py)

E.1) Summary of the optimization problem: We can show that the firm’s expected profit is given by

e ps(aps—ps)
Elly(z,q), if £ 2> g 5iae +1

Ut _ : T #(apr—ps)
EHf (SU,q) - ]EHQ(’qu)a if r3 < q < % +1

EH7(£7Q)a if 1 S % S 3.

The potentially feasible solutions are (z2,g2), (%9, q9) and (x7,q7). We discuss the feasibility conditions for

(z9,q9) in E.2 below.

13



E.4) Suppose r3 < Z < M + 1: The firm’s expected profit function is given by Ellg =

g — (I-pp)l-o)w
w(z—q) apfq w(ar+(1 a)q)
pf(%*?f) pf Ds Ti-py pf apyf(l— 1 “Zy—(-pplw
o s (I=H=y+w(z—@ldF(y)+ "l -y pr(l=pp)ydF(y)+[ o [pra+
Py f,p —pf)
(1 pp)y — DIFW) + [ i seerawn [pr(1 = B2yt w(e — @)dF () + [ 5 [(py —c— b~
apf(1- {7 (1 pplw ===

w)(1— 222y e+ 8) g+ waldF (y +f1 ‘“pr (Umpiymary (o q§)(UBOv—0® gy oy (22UPOU g R (y) +
J22 pga = (e + 8(x — @)ldF (y ) — ¢q — .

The FOCs for the unique interior solution are

OEMy _ o (c+d)g  (pslops = ps)(apy —w) = (1= a)(1 = prw?)q (1 - a)w(oapy —w + aw)(z — q)
9q L—pr (I =p)((1=pp)(l—a)w—aps(l —a—ps+ps)) (1—pp)(l—a)w—aps(l—a—ps+ps)
(1—a)*w?((1 —ps)g (l—a)w*z—q)  qlaps —ps)(c+0)

S (I=pr—at+p)((1—pp)(1—a)w—aps(l—a—ps+ps)) prlaps —ps) (1 —pp)(L —ps —a+ps)

OEIly (pyf—c—0)x w(apyr —w + aw)(1 — a)(x — q)
=p;f—c—06—cm—
ox 1—py apf(l—a—pr+ps)— (1 —a)(l—pslw)
(I—ww?(x—q)  (ps —a+a*(1 —py))(ps —w—c— 8z +2(ps — aps)(aps — w)zx
prlapy — ps) (1=pp)(a—ps)(1—a)
(apr —ps)(1 4+ a)(c+ 6)$ _pyu alc+ 9 +w)x n (ps — applw(apr — w + aw)x
(L—pp)l—a)(a—ps)  1—py o —ps (@ —ps)(aps(l —a—ps+ps) — (1 —a)(l —pslw)
The interior solution (xg,qq) is feasible iff zg,q9 > 0, daEEQ < 0, 88]E1219 <0, Ag = 828]]::12[9 . 822139 —
%Kl z ( s)
(W)2>Oandr3<?§<%+l
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EC.3. Proofs for Lemma 3 and Proposition 9

Proof of Lemma 8: We first prove (ii). Based on the analyses in sections EC.1 and EC.2, we can see that
when w > ap; (i.e., Region A), the focal firm upcycles all deadstock fabric under any realized market size
y. When w < a(pf — ¢ — 0) (i.e., Regions B and C), the firm does not upcycle all of its deadstock fabric
under some values of y, so that there exists deadstock fabric in expectation.

When a(py —c—9) < w < apy (i.e., Regions D and E), the firm upcycles all deadstock fabric under any

realized market size y if and only if (iff) (z2, ¢2) is the optimal solution. Note that this solution is feasible iff

w > dpr(1—ps/a—atapy)

= 0(ps—ps/)+(pr—c—cm)(1—ps)(1—a

not. Hence, it suffices to consider only the case when (z2,¢2) and (z7,q7) are feasible solutions, and show

d]EH7(137,q7) < dEHQ(IQ,qz)
dw dw

equivalently (by inspecting the profit functions in EC.2), ESYT(z7, ¢7) < ESYT(x3,¢). Now, for given z and

; —c¢—d. Also note that when (z2, q2) is feasible, (zs,gs) and (zg, q9) are

that the former dominates when w is sufficiently large. To do so, we prove that

, or

q, let $°(z,q) = min{z — g,z — (1 — B=L2)y, (x_(ll_f;f)yﬁ} denote the amount upcycled if the firm upcycles
all leftover deadstock fabric. Clearly, ESU(27,q7) < ES®(x7,¢7). Moreover, since ES(x, q) increases in
and decreases in ¢, we have ES?(z7, q7) < ES®(22, ¢q2) if 27 < 29 and g7 > ¢o.

To prove 27 < xq, we use §7(z) to denote the solution to % for given x. For the solution (x, G7(x))

to be feasible it needs to satisfy ¢7(z) > x/rs. Substituting this condition into fmngiy’q) yields
A~ 2 _ _ _ _
OEIl; (2, 4r(z) < w (w—a(ps —c—9))(aps ps)> T4 pr—c—8—cm—(py—c— 8)——.
Ox pyr(a—ps) (1= a)(L=ps)(er—ps) 1—py
Since
ORIy (z, q) (a(pf—c—é—w) ( x ) (w—a(pf—c—6)> x
= r+pr—c—06—cm— —c—96 )
o s —pja) t oo )OTH by =e=07—;

the difference between the two equations above is

ORIz (x, G7(x))  OEly(x,q)  w (Y _a) <0
Ox oz o —ps Py '

OEIl, (x,q) OEIl7 (2,47 (x)) OETl7 (x2,47(x2))
ox ox ox

Thus, substituting xo, which satisfies = 0 into would result in < 0.
This implies z7 < x2. We can show ¢7 > ¢o similarly. This concludes the proof.

For (i), The firm’s expected profit function under the upcycling option is:
EHUT(xv q) =Pf- Emln{DfUT(SUT(xa q, Y))v q-+ q(ISJT(xv Q)} —Cpd —Cq — (C + 5)Eq(ISJT(xa q, Y) + wESUT($7 q, Y)a

where SUT(z,q,y) and qé”(:c,q) are as described in section EC.1. For any given w, if the firm does not
engage in quick response, then it would choose 2 = ¢ = 2® and obtain the benchmark profit EIIVT (25, ¢?) =
EIZ (2B, ¢P), which is invariant in 8 and w. Note that EIIV(x, ¢) is continuous and differentiable in x and
g. Further, by inspecting the expected profit functions (see EC.2), it is easy to see that for any given z, ¢,
EITVt (2, q) increases in w and decreases in §. Therefore, by the envelope theorem, ETIVT(2UT, ¢UT) increases in
w and decreases in . Since the firm engages in quick response if and only if EIIVT (2VT, ¢UT) > EIIZ (27, ¢P),
it follows that there exists a threshold 6UT(w) such that this happens if and only if § < 6YT(w), and the
threshold 6V (w) is increasing in w. m

Proof of Proposition 9: The analyses in EC.2 show that there are five solution regions. We prove
the result in every region. Specifically, in each region, we consider each feasible solution (x;,q;) and show

that the result applies, i.e., z; > 29 and ¢; < ¢©.
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In Region A (i.e., w > apy), the potentially feasible solutions (aside from (z7,q?)), are (z1,¢1) and

(22, q2). First suppose that (x1,¢q1) is the optimal solution. This solution is obtained by solving B]Enaliéx’q) =0

2
and %Héiiz’q) = 0, and is feasible only if Mré%(f"“) < 0. We compare (71, q;) with (29, ¢%) in two possible

cases.
First, when 6 < 69, recall that 1f(;f = pf;fc__f__;’” and 132; = cjé' We can rearrange the terms in
BEngiw,q) to get
OEIL (z,q) (w—alpy—c=90)) (= (z —g)a(l — )
o4 s Ce_5— Wyt — @)
o (pf—c )(1_pf)+pf c cm + s T +ap pyy—
_a(wtctd—apy) (az+ (1 —a)g)
l-a 1—py
>*(pf*6*5)(1 )+ Dpr—c—0—cm.
~py
The inequality holds because (w_a(lpf;c_é)) <1fpf> > a(w+clti_apf) 1fpf > a(w+clt6a_apf) (w'sl'(fp_fam. Hence,
%z@’ql) > 0, which implies z; > 2.
Second, when § > 69, recall that 1”5; = 132 = pf—pcf_c’”. Substituting the equation 'ﬂg—gl = 0 into
% = 0 and re-arranging the terms yields
8EH1(x,q):_p Cpre—e _6+w—|—c+5—apf x +a(apf—w—c—6) ar+ (1 —a)q
ox ! 1—py ! " 1-—a 1—py 1—a 1—ps
z—q)o(l —«
n apf( @a(l — )

apf — Ps

T w+e+d—a T w+cec+—a ar+ (1 —«a
:_pf< )+pf_c_cm+ Pf( )_ Pf( ( )Q>
1—py 11—« 1-p; l-«a 1—py

xT
> —pf (1_pf)+pf—c—cm.

Again, this implies z; > 29. We can use similar methods to obtain ¢; < ¢©.

Now suppose the interior solution (z2,¢2) is the optimal solution. For § < 6%, it is easy to see g2 < ¢%,

and we have 5 > 2% because in this region, w > ap; > 1_§£/(Z’:fézfi)pf) > (ff;?;aaz(sgﬁ;is)). For § > 09, we

compare (32, ga) with ¢ = ¢ = %. Observe that x5 decreases in § while g9 increases in ¢, and

thus there exists a threshold d, such that this solution is feasible (i.e., z2/qa > r3) if and only if § < 5o. Tt suf-
fices to show that at § = d, 25 > 29 and ¢ < ¢%. This is equivalent to showing that as ¢ increases, when

crosses z¢g from above (or when go crosses g from below), the solution (x2, ¢2) is no longer feasible. To do so,

(pr—c—cm)(—aps(aps—ps)+(a—ps—(1-pp)a?) (ctw)) .
—aps(aps—ps)+(a—ps—(1—ps)a?)(ctem) B

5 = 84, and &, > &,. Thus it suffices to show

we note that as d increases, o crosses @ from above at § =

(pr—c—cm)(A—ps)(1—c)(ctw)

o O-pp)-a)(ctem)—ps(aps—ps

that xa/g2 < r3 at § = min{d,,d,} = ;. Since z2 = 29 at this point, this is equivalent to showing
(wt+c)(1—pys)(pr—c—cm)

N pr(1=ps/a)—(1—pys)(pr—c—cm) "

(122 — (@ = p)(1 =) (w+ ) + (1= @) (aps — ps) = a(l = py)(aps = ps)(e + cm) > 0, which holds

because in this region, w + ¢ > apy and py > ¢+ cp,.

Sz, q2 crosses ¢% from below at § =

@ < r3 - g, which simplifies into d§, > This inequality holds if and only if

The proof for Regions B, C, D, and E follows similar procedures and are hence omitted. m
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